Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new link between the c-Abl tyrosine kinase and phosphoinositide signalling through PLC-γ1

An Erratum to this article was published on 01 May 2003

Abstract

The c-Abl tyrosine (Tyr) kinase is activated after platelet-derived-growth factor receptor (PDGFR) stimulation in a manner that is partially dependent on Src kinase activity. However, the activity of Src kinases alone is not sufficient for activation of c-Abl by PDGFR. Here we show that functional phospholipase C-γ1 (PLC-γ1) is required for c-Abl activation by PDGFR. Decreasing cellular levels of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) by PLC-γ1-mediated hydrolysis or dephosphorylation by an inositol polyphosphate 5-phosphatase (Inp54) results in increased Abl kinase activity. c-Abl functions downstream of PLC-γ1, as expression of kinase-inactive c-Abl blocks PLC-γ1-induced chemotaxis towards PDGF-BB. PLC-γ1 and c-Abl form a complex in cells that is enhanced by PDGF stimulation. After activation, c-Abl phosphorylates PLC-γ1 and negatively modulates its function in vivo. These findings uncover a newly discovered functional interdependence between non-receptor Tyr kinase and lipid signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: c-Abl activation by PDGF is dependent on PLC-γ1 activity.
Figure 2: PtdIns(4,5)P2 inhibits c-Abl kinase activity.
Figure 3: c-Abl and PLC-γ1 function together to regulate chemotaxis.
Figure 4: PLC-γ1 and c-Abl form a complex.
Figure 5: c-Abl induces Tyr phosphorylation of PLC-γ1 in vivo.
Figure 6: c-Abl phosphorylates PLC-γ1 in vitro.
Figure 7: c-Abl phosphorylation of PLC-γ1 causes downregulation of PLC activity.
Figure 8: Model of the interaction between c-Abl and PLC-γ1 signalling pathways.

Similar content being viewed by others

References

  1. Pendergast, A.M. The Abl family Kinases: mechanisms of regulation and signaling. Adv. Cancer Res. 85, 51–100 (2002).

    Article  CAS  Google Scholar 

  2. Lewis, J.M., Baskaran, R., Taagepera, S., Schwartz, M.A. & Wang, J.Y.J. Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proc. Natl Acad. Sci. USA 93, 15174–15179 (1996).

    Article  CAS  Google Scholar 

  3. Zipfel, P.A. et al. The c-Abl tyrosine kinase is regulated downstream of the B cell antigen receptor and interacts with CD19. J. Immunol. 165, 6872–6879 (2000).

    Article  CAS  Google Scholar 

  4. Plattner, R., Kadlec, L., DeMali, K.A., Kazlauskas, A. & Pendergast, A.M. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev. 13, 2400–2411 (1999).

    Article  CAS  Google Scholar 

  5. Rebecchi, M.J. & Pentyala, S.N. Structure, function and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80, 1291–1335 (2000).

    Article  CAS  Google Scholar 

  6. Kim, H.K. et al. PDGF stimulation of inositol phospholipid hydrolysis requires PLC-γ1 phosphorylation on tyrosine residues 783 and 1254. Cell 65, 435–441 (1991).

    Article  CAS  Google Scholar 

  7. Park, D., Min, H.K. & Rhee, S.G. Inhibition of CD3-linked phospholipase C-gamma 1 by phorbol ester and by cAMP is associated wih decreased phosphotyrosine and increased phosphoserine contents of PLC-gamma 1. J. Biol. Chem. 267, 1496–1501 (1992).

    CAS  PubMed  Google Scholar 

  8. Kundra, V. et al. Regulation of chemotaxis by the platelet-derived growth factor receptor-β. Nature 367, 474–476 (1994).

    Article  CAS  Google Scholar 

  9. Firth, J.D., Putnins, E.E., Larjava, H. & Uitto, V.J. Exogenous phospholipase C stimulates epithelial cell migration and integrin expression in vitro. Wound Repair Regeneration 9, 86–94 (2001).

    Google Scholar 

  10. Song, H. & Poo, M. Signal transduction underlying growth cone guidance by diffusible factors. Curr. Opin Neurobiol. 9, 355–363 (1999).

    Article  CAS  Google Scholar 

  11. Yu, H., Fukami, K., Itoh, T. & Takenawa, T. Phosphorylation of phospholipase Cγ1 on tyrosine residue 783 by platelet-derived growth factor regulates reorganization of the cytoskeleton. Exp. Cell Res. 243, 112–122 (1998).

    Article  Google Scholar 

  12. Amyere, M. et al. Constitutive macropinocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C. Mol. Biol. Cell 11, 3453–3467 (2000).

    Article  CAS  Google Scholar 

  13. Yamamoto, M. et al. Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in CV1 cells. J. Cell Biol. 152, 867–876 (2001).

    Article  CAS  Google Scholar 

  14. Gilbert, S.H., Perry, K. & Fay, F.S. Mediation of Chemoattractant-induced changes in (Ca2+)i and cell shape, polarity, and locomotion by InsP3, DAG, and protein kinase C in newt eosinophils. J. Cell Biol. 127, 489–503 (1994).

    Article  CAS  Google Scholar 

  15. Kadlec, L. & Pendergast, A.M. The amphiphysin-like protein 1 (ALP1) interacts functionally with the cABL tyrosine kinase and may play a role in cytoskeletal regulation. Proc. Natl Acad. Sci. USA 94, 12390–12395 (1997).

    Article  CAS  Google Scholar 

  16. Koleske, A.J. et al. Essential Roles for the Abl and Arg Tyrosine Kinases in Neurulation. Neuron 21, 1259–1272 (1998).

    Article  CAS  Google Scholar 

  17. Wang, Y., Miller, A.L., Mooseker, M.S. & Koleske, A.J. The Abl-related gene (Arg) non-receptor tyrosine kinase uses two F-actin binding domains to bundle actin. Proc. Natl Acad. Sci. USA 98, 14865–70 (2001).

    Article  CAS  Google Scholar 

  18. Kain, K.H. & Klemke, R.L. Inhibition of cell migration by Abl family tyrosine kinases through uncoupling of Crk-CAS complexes. J. Biol. Chem. 19, 16185–16192 (2001).

    Article  Google Scholar 

  19. Frasca, F., Vigneri, P., Vella, V., Vigneri, R. & Wang, J.Y. Tyrosine kinase inhibitor STI571 enhances thyroid cancer cell motile response to Hepatocyte Growth Factor. Oncogene 20, 3845–3856 (2001).

    Article  CAS  Google Scholar 

  20. Zukerberg, L.R. et al. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26, 633–646 (2000).

    Article  CAS  Google Scholar 

  21. Woodring, P.J., Hunter, T. & Wang, J.Y.J. Inhibition of c-Abl tyrosine kinase activity by filamentous actin. J. Biol. Chem. 276, 27104–27110 (2001).

    Article  CAS  Google Scholar 

  22. Diakonova, M. et al. Epidermal growth factor induces rapid and transient association of phospholipase C-γ1 with EGF-receptor and filamentous actin at membrane ruffles of A431 cells. J. Cell Sci. 108, 2499–2509 (1995).

    CAS  PubMed  Google Scholar 

  23. DeMali, K.A. & Kazlauskas, A. Activation of Src family members is not required for the platelet-derived growth factor B receptor to initiate mitogenesis. Mol. Cell Biol. 18, 2014–2022 (1998).

    Article  CAS  Google Scholar 

  24. Ji, Q., Ermini, S., Baulida, J., Sun, F. & Carpenter, G. Epidermal growth factor signaling and mitogenesis in Plcg1 null mouse embryonic fibroblasts. Mol. Biol. Cell 9, 749–757 (1997).

    Article  Google Scholar 

  25. Smith, M.R. et al. Phospholipase C-gamma 1 can induce DNA synthesis by a mechanism independent of its lipase activity. Proc. Natl Acad. Sci. USA 91, 6554–6558 (1994).

    Article  CAS  Google Scholar 

  26. Stolz, L.E., Kuo, W.J., Longchamps, J., Sekhon, M. & York, J.D. INP51, a yeast inositol polyphosphate Inp54 required for phosphatidylinositol 4,5-bisphosphate homeostasis and whose absence confers a cold-resistant phenotype. J. Biol. Chem. 19, 11852–11860 (1998).

    Article  Google Scholar 

  27. Raucher, D. et al. Phosphatylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100, 221–228 (2000).

    Article  CAS  Google Scholar 

  28. Oh, E.S., Woods, A., Lim, S.T., Theibert, A.W. & Couchman, J.R. Syndecan-4 proteoglycan cytoplasmic domain and phosphatidylinositol 4,5-bisphosphate coordinately regulate protein kinase C activity. J. Biol. Chem. 273, 10624–10629 (1998).

    Article  CAS  Google Scholar 

  29. Ronnstrand, L. et al. Overactivation of phospholipase C-γ1 renders platelet-derived growth factor β-receptor expressing cells independent of the phosphatidylinositol 3-kinase pathway for chemotaxis. J. Biol. Chem. 274, 22089–22094 (1999).

    Article  CAS  Google Scholar 

  30. Pendergast, A.M. et al. Evidence for regulation of the human Abl tyrosine kinase by a cellular inhibitor. Proc. Natl Acad. Sci. USA 88, 5927–5931 (1991).

    Article  CAS  Google Scholar 

  31. Ivan, M. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 20, 464–9 (2001).

    Article  Google Scholar 

  32. Goga, A. et al. Oncogenic activation of c-Abl by mutation within its last exon. Mol. Cell Biol. 13, 4967–4975 (1993).

    Article  CAS  Google Scholar 

  33. Furstoss, O. et al. c-Abl is an effector of Src for growth factor-induced c-myc expression and DNA synthesis. EMBO J. 21, 514–524 (2002).

    Article  CAS  Google Scholar 

  34. Mayer, B. & Baltimore, D. Mutagenic analysis of the roles of SH2 and SH3 domains in regulation of the Abl tyrosine kinase. Mol. Cell Biol. 14, 2883–2894 (1994).

    Article  CAS  Google Scholar 

  35. Brasher, B.B. & Van Etten, R.A. c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines. J. Biol. Chem. 275, 35631–35637 (2000).

    Article  CAS  Google Scholar 

  36. Van Etten, R.A. Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol. 9, 179–186 (1999).

    Article  CAS  Google Scholar 

  37. Barila, D. & Superti-Furga, G. An intramolecular SH3-domain interaction regulates c-Abl activity. Nature Genet. 18, 280–282 (1998).

    Article  CAS  Google Scholar 

  38. Jackson, P. & Baltimore, D. N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-Abl. EMBO J. 8, 449–456 (1989).

    Article  CAS  Google Scholar 

  39. Pluk, H., Dorey, K. & Superti-Furga, G. Autoinhibition of c-Abl. Cell 108, 247–259 (2002).

    Article  CAS  Google Scholar 

  40. Cong, F. et al. Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation. Mol. Cell 6, 1413–1423 (2000).

    Article  CAS  Google Scholar 

  41. Echarri, A. & Pendergast, A.M. Activated c-Abl is degraded by the ubiquitin-dependent proteasome pathway. Curr. Biol. 11, 1759–1765 (2001).

    Article  CAS  Google Scholar 

  42. Gallo, G. & Letourneau, P.C. Axon guidance: A balance of signals sets axons on the right track. Curr. Biol. 9, R490–R492 (1999).

    Article  CAS  Google Scholar 

  43. Osborne, S.L., Meunier, F.A. & Schiavo, G. Phosphoinositides as key regulators of synaptic function. Neuron 32, 9–12 (2001).

    Article  CAS  Google Scholar 

  44. Irvin, B.J., Williams, B.L., Nilson, A.E., Maynor, H.O. & Abraham, R.T. Pleiotropic contributions of phospholipase C-γ1 (PLC-γ1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-γ1-deficient Jurkat T-cell line. Mol. Cell Biol. 20, 9149–9161 (2000).

    Article  CAS  Google Scholar 

  45. Valius, M., Bazenet, C. & Kazlauskas, A. Tyrosines 1021 and 1009 are phosphorylation sites in the carboxy terminus of the platelet-derived growth factor receptor beta subunit and are required for binding of phospholipase C gamma and a 64-kilodalton protein, respectively. Mol. Cell Biol. 13, 133–143 (1993).

    Article  CAS  Google Scholar 

  46. Williams, B.L. et al. Phosphorylation of Tyr319 in ZAP-70 is required for T-cell antigen receptor-dependent phospholipase C-γ1 and Ras activation. EMBO J. 18, 1832–1844 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants CA70940 and GM62375 to A.M.P., NIH training grant CA09111-25 to R.P., National Institute of Health grant GM47286 to R.T.A., Howard Hughes Medical Institute funding to J. T. Y, and funded in part by GlaxoSmithKline. We thank G. Carpenter (Vanderbilt University, Nashville, TN) for the PLC-γ1 null fibroblasts, R.Van Etten (Harvard Medical School, Boston, MA) for c-Abl constructs, T. Pawson (Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada) for GST–PLC-γ1 fusion proteins, and A. Koleske (Yale University, New Haven, CT) for Abl/Arg null MEFs. We thank S. Finn and P. Zipfel (Duke University) for critically reading the manuscript, J. Stevensen-Paulik and A. Seeds (Duke University) for help in running the HPLC, and M. Calera (Harvard Medical School) for the PAE/PDGFR-β cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Marie Pendergast.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plattner, R., Irvin, B., Guo, S. et al. A new link between the c-Abl tyrosine kinase and phosphoinositide signalling through PLC-γ1. Nat Cell Biol 5, 309–319 (2003). https://doi.org/10.1038/ncb949

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb949

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing