Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A non-proteolytic function of separase links the onset of anaphase to mitotic exit

Abstract

Separase is a protease that triggers chromosome segregation at anaphase onset by cleaving cohesin, the chromosomal protein complex responsible for sister chromatid cohesion1,2. After anaphase, cells exit from mitosis; that is, they complete downregulation of cyclin-dependent kinase activity, undergo cytokinesis and enter G1 of the next cell cycle. Here we show that separase activation at the onset of anaphase is sufficient to promote release from the nucleolus and activation of the budding yeast phosphatase, Cdc14, a key step in mitotic exit3,4,5. The ability of separase to activate Cdc14 is independent of its protease function but may involve promoting phosphorylation of the Cdc14 inhibitor Net1. This novel separase function is coregulated with its proteolytic activity by the separase inhibitor securin. This helps to explain the coupling of anaphase and mitotic exit — after securin degradation at anaphase onset, separase cleaves cohesin to trigger chromosome segregation and concurrently uses a non-proteolytic mechanism to initiate mitotic exit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Separase promotes mitotic exit.
Figure 2: Analysis of nucleolar Cdc14 release by separase.
Figure 3: Release of Cdc14 is independent of separase protease activity.
Figure 4: Interactions of separase during mitotic exit.
Figure 5: A model for anaphase and mitotic exit.

Similar content being viewed by others

References

  1. Uhlmann, F., Wernic, D., Poupart, M.-A., Koonin, E.V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Visintin, R., Hwang, E.S. & Amon, A. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398, 818–823 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Shou, W. et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Bardin, A.J. & Amon, A. MEN and SIN: what's the difference? Nature Rev. Mol. Cell Biol. 2, 1–12 (2001).

    Article  Google Scholar 

  6. Tinker-Kulberg, R.L. & Morgan, D.O. Pds1 and Esp1 control both anaphase and mitotic exit in normal cells and after DNA damage. Genes Dev. 13, 1936–1949 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Granot, D. & Snyder, M. Segregation of the nucleolus during mitosis in budding and fission yeast. Cell Motil. Cytoskeleton 20, 47–54 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Yeong, F.M., Lim, H.H., Wang, Y. & Surana, U. Early expressed Clb proteins allow accumulation of mitotic cyclin by inactivating proteolytic machinery during S phase. Mol. Cell. Biol. 21, 5071–5081 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shirayama, M., Toth, A., Galova, M. & Nasmyth, K. APCCdc20 promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 402, 203–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Yeong, F.M., Lim, H.H., Padmashree, C.G. & Surana, U. Exit from mitosis in budding yeast: Biphasic inactivation of the Cdc28-Clb2 mitotic kinase and the role of Cdc20. Mol. Cell 5, 501–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Stegmeier, F., Visintin, R. & Amon, A. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108, 207–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Jaspersen, S.L., Charles, J.F., Tinker-Kulberg, R.L. & Morgan, D.O. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol. Biol. Cell 9, 2803–2817 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, S.E., Frenz, L.M., Wells, N.J., Johnson, A.L. & Johnston, L.H. Order of function of the budding yeast mitotic exit-network proteins Tem1, Cdc15, Mob1, Dbf2, and Cdc5. Curr. Biol. 11, 784–788 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Shou, W. et al. Cdc5 influences phosphorylation of Net1 and disassembly of the RENT complex. BMC Mol. Biol. 3, 3 (2002).

    Article  Google Scholar 

  15. Yoshida, S. & Toh-e, A. Budding yeast Cdc5 phosphorylates Net1 and assists Cdc14 release from the nucleolus. Biochem. Biophys. Res. Commun. 294, 687–691 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Sullivan, M., Lehane, C. & Uhlmann, F. Orchestrating anaphase and mitotic exit: separase cleavage and localization of Slk19. Nature Cell Biol. 3, 771–777 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Baum, P., Yip, C., Goetsch, L. & Byers, B. A yeast gene essential for regulation of spindle pole duplication. Mol. Cell Biol. 8, 5386–5397 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hornig, N.C.D., Knowles, P.P., McDonald, N.Q. & Uhlmann, F. The dual mechanism of separase regulation by securin. Curr. Biol. 12, 973–982 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Hu, F. et al. Regulation of the Bub2–Bfa1 GAP complex by Cdc5 and cell cycle checkpoints. Cell 107, 655–665 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Yoshida, S., Asakawa, K. & Toh-e, A. Mitotic exit network controls the localization of Cdc14 to the spindle pole body in Saccharomyces cerevisiae. Curr. Biol. 12, 944–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Cheng, L., Hunke, L. & Hardy, C.F.J. Cell cycle regulation of the Saccharomyces cerevisiae Polo-like kinase Cdc5p. Mol. Cell. Biol. 18, 7360–7370 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Juang, Y.-L. et al. APC-mediated proteolysis of Ase1 and the morphogenesis of the mitotic spindle. Science 275, 1311–1314 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Cohen-Fix, O. & Koshland, D. Pds1p of budding yeast has dual roles: inhibition of anaphase initiation and regulation of mitotic exit. Genes Dev. 13, 1950–1959 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bembenek, J. & Yu, H. Regulation of the anaphase-promoting complex by the dual secificity phosphatase human Cdc14a. J. Biol. Chem. 276, 48237–48242 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Kaiser, B.K., Zimmerman, Z.A., Charbonneau, H. & Jackson, P.K. Disruption of centrosome structure, chromosome segregation, and cytokinesis by misexpression of human Cdc14A phosphatase. Mol. Biol. Cell 13, 2289–2300 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bardin, A.J., Visintin, R. & Amon, A. A mechanism for coupling exit from mitosis to partitioning of the nucleus. Cell 102, 21–31 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Pereira, G., Höfken, T., Grindlay, J., Manson, C. & Schiebel, E. The Bub2p spindle checkpoint links nuclear migration with mitotic exit. Mol. Cell 6, 1–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Knop, M. et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963–972 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Wach, A., Brachat, A., Pöhlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Gietz, R.D. & Sugino, A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base restriction sites. Gene 74, 527–534 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Kushnirov, V.V. Rapid and reliable protein extraction from yeast. Yeast 16, 857–860 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Aris, J.P. & Blobel, G. Identification and characterization of a yeast nucleolar protein that is similar to a rat liver nucleolar protein. J. Cell Biol. 107, 17–31 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank J. Aris, O. Cohen-Fix, L. Johnston, K. Sawin, and A. Toh-e for reagents, S. Weitzer for cloning Polo, A. Amon, J. Cooper, J. Hayles, M. Pardo, E. Roldan, T. Toda and all members of the laboratory for discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Uhlmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and References

Supplementary Figure S1. Separase-induced rebudding depends upon Cdc14 activity. (PDF 176 kb)

Supplementary Figure S2. Separase expression leads to dephosphorylation of Cdc15 and accumulation of Sic1.

Supplementary Figure S3. Overexpression of neither Slk19 nor Spo12 in metaphase arrested cells induces nucleolar release of Cdc14.

Supplementary Figure S4. Slk19 cleavage is not required for Cdc14 nucleolar release.

Supplementary Figure S5. The localisation of separase in anaphase depends on Slk19

Supplementary Figure S6. Analysis of Polo mediated nucleolar release of Cdc14.

Supplementary Figure S7. Comparison of Cdc14 release by Polo or separase expression suggests that Polo is less efficient in releasing Cdc14.

Supplementary Figure S8. Deletion of Slk19 delays mitotic exit independently of anaphase spindle destabilisation.

Supplementary references

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, M., Uhlmann, F. A non-proteolytic function of separase links the onset of anaphase to mitotic exit. Nat Cell Biol 5, 249–254 (2003). https://doi.org/10.1038/ncb940

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing