Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis

Abstract

The ubiquitin system recognizes degradation signals of protein substrates through E3–E2 ubiquitin ligases, which produce a substrate-linked multi-ubiquitin chain. Ubiquitinated substrates are degraded by the 26S proteasome, which consists of the 20S protease and two 19S particles. We previously showed that UBR1 and UFD4, two E3 ligases of the yeast Saccharomyces cerevisiae, interact with specific proteasomal subunits. Here we advance this analysis for UFD4 and show that it interacts with RPT4 and RPT6, two subunits of the 19S particle. The 201-residue amino-terminal region of UFD4 is essential for its binding to RPT4 and RPT6. UFD4ΔN, which lacks this N-terminal region, adds ubiquitin to test substrates with apparently wild-type activity, but is impaired in conferring short half-lives on these substrates. We propose that interaction of a targeted substrate with the 26S proteasome involves contacts of specific proteasomal subunits with the substrate-bound ubiquitin ligase, with the substrate-linked multi-ubiquitin chain and with the substrate itself. This multiple-site binding may function to slow down dissociation of the substrate from the proteasome and to facilitate the unfolding of substrate through ATP-dependent movements of the chaperone subunits of the 19S particle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The N terminus of UFD4 is required for binding to RPT4 and RPT6.
Figure 2: In vivo activity of UFD4ΔN.
Figure 3: UFD4 but not UFD4ΔN augments degradation of UbV76-V-βgal.

Similar content being viewed by others

References

  1. Hershko, A., Ciechanover, A. & Varshavsky, A. Nature Med. 10, 1073–1081 (2000).

    Article  Google Scholar 

  2. Pickart, C. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Weissman, A. M. Nature Rev. Mol. Cell Biol. 2, 169–178 (2001).

    Article  CAS  Google Scholar 

  4. Zwickl, P., Baumeister, W. & Steven, A. Curr. Opin. Struct. Biol. 10, 242–250 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Russell, S. J., Steger, K. A. & Johnston, S. A. J. Biol. Chem. 274, 21943–21952 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Rechsteiner, M. in Ubiquitin and the Biology of the Cell (eds Peters, J. M., Harris, J. R. & Finley, D.) 147–189 (Plenum, New York, 1998).

    Book  Google Scholar 

  7. Glickman, M. H., Rubin, D. M., Fried, V. A. & Finley, D. Mol. Cell. Biol. 18, 3149–3162 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lam, Y. A., Lawson, T. G., Velayutham, M., Zweier, J. L. & Pickart, C. M. Nature 416, 763–767 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. van Nocker, S. et al. Mol. Cell. Biol. 16, 6020–6028 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Turner, G. C., Du, F. & Varshavsky, A. Nature 405, 579–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Xie, Y. & Varshavsky, A. Proc. Natl Acad. Sci. USA 97, 2497–2502 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kwon, Y. T. et al. Science 297, 96–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Johnson, E. S., Ma, P. C., Ota, I. M. & Varshavsky, A. J. Biol. Chem. 270, 17442–17456 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Koegl, M. et al. Cell 96, 635–644 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Verma, R. et al. Mol. Biol. Cell 11, 3425–3439 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Suzuki, T. & Varshavsky, A. EMBO J. 18, 6017–6026 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Turner, G. C. & Varshavsky, A. Science 289, 2117–2120 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Ghislain, M., Dohmen, R. J., Levy, F. & Varshavsky, A. EMBO J. 15, 4884–4899 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baker, R. T. & Varshavsky, A. Proc. Natl Acad. Sci. USA 87, 2374–2378 (1991).

    Google Scholar 

  20. Braun, S., Matuschewski, K., Rape, M., Thoms, S. & Jentsch, S. EMBO J. 21, 615–621 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A. EMBO J. 19, 2181–2192 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dai, R. M. & Li, C. C. Nature Cell Biol. 3, 740–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. You, J. & Pickart, C. M. J. Biol. Chem. 276, 19871–19878 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, L. & Madura, K. Mol. Cell. Biol. 22, 4902–4913 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bertolaet, B. et al. Nature Struct. Biol. 8, 417–422 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Hiyama, H. et al. J. Biol. Chem. 274, 28019–28025 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Kleijnen, M. F. et al. Cell 6, 409–419 (2000).

    CAS  Google Scholar 

  28. Farrás, R. et al. EMBO J. 20, 2742–2756 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jäger, S., Strayle, J., Heinemeyer, W. & Wolf, D. H. EMBO J. 20, 4423–4431 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xie, Y. & Varshavsky, A. Proc. Natl Acad. Sci. USA 98, 3056–3061 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Verma and R. Deshaies for the purified 26S proteasome; E. Johnson, D. Botstein and S. Jentsch for S. cerevisiae strains and plasmids; and members of the Varshavsky laboratory, particularly R. Hu and J. Sheng, for assistance and advice. This work was supported by a grant to A.V. from the NIH. Y.X. was supported in part by a postdoctoral fellowship from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Varshavsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Varshavsky, A. UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis. Nat Cell Biol 4, 1003–1007 (2002). https://doi.org/10.1038/ncb889

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing