Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Activin/TGF-β induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP

Abstract

Members of the transforming growth factor β (TGF-β) family regulate fundamental physiological processes, such as cell growth, differentiation and apoptosis, in almost all cell types1. As a result, defects in TGF-β signalling pathways have been linked to uncontrolled cellular proliferation and carcinogenesis1. Here, we explored the signal transduction mechanisms downstream of the activin/TGF-β receptors that result in cell growth arrest and apoptosis. We show that in haematopoietic cells, TGF-β family members regulate apoptosis through expression of the inositol phosphatase SHIP (Src homology 2 (SH2) domain-containing 5′ inositol phosphatase), a central regulator of phospholipid metabolism2. We also demonstrated that the Smad pathway is required in the transcriptional regulation of the SHIP gene. Activin/TGF-β-induced expression of SHIP results in intracellular changes in the pool of phospholipids, as well as in inhibition of both Akt/PKB (protein kinase B) phosphorylation and cell survival. Our results link phospholipid metabolism to activin/TGF-β-mediated apoptosis and define TGF-β family members as potent inducers of SHIP expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activin and TGF-β induce apoptosis in haematopoietic cells.
Figure 2: Activin and TGF-β induce SHIP expression.
Figure 3: Activin/TGFβ-induced transcription of SHIP requires Smad2, Smad3 and Smad4.
Figure 4: Activin/TGF-β-induced SHIP expression and activity inhibit Akt phosphorylation.
Figure 5: Inhibition of SHIP expression prevents activin- and TGF-β-induced apoptosis.

Similar content being viewed by others

References

  1. Massague, J. Annu. Rev. Biochem. 67, 753–791 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Rohrschneider, L. R., Fuller, J. F., Wolf, I., Liu, Y. & Lucas, D. M. Genes Dev. 14, 505–520 (2000).

    CAS  PubMed  Google Scholar 

  3. Vale, W. et al. Nature 321, 776–779 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, Y. G., Lui, H. M., Lin, S. L., Lee, J. M. & Ying, S. Y. Exp. Biol. Med. 227, 75–87 (2002).

    Article  CAS  Google Scholar 

  5. Chaouchi, N. et al. Oncogene 11, 1615–1622 (1995).

    CAS  PubMed  Google Scholar 

  6. Arsura, M., Wu, M. & Sonenshein, G. E. Immunity 5, 31–40 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Selvakumaran, M. et al. Mol. Cell Biol. 14, 2352–2360 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saltzman, A. et al. Exp. Cell Res. 242, 244–254 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Koseki, T. et al. FEBS Lett. 376, 247–250 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Fukuchi, Y. et al. Oncogene 20, 704–713 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, R. H. & Chang, T. Y. Cell Growth Differ. 8, 821–827 (1997).

    CAS  PubMed  Google Scholar 

  12. Perlman, R., Schiemann, W. P., Brooks, M. W., Lodish, H. F. & Weinberg, R. A. Nature Cell Biol. 3, 708–714 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Damen, J. E. et al. Proc. Natl Acad. Sci. USA 93, 1689–1693 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Horn, S. et al. Leukemia 15, 112–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Li, D. M. & Sun, H. Cancer Res. 57, 2124–2129 (1997).

    CAS  PubMed  Google Scholar 

  16. Wolf, I., Lucas, D. M., Algate, P. A. & Rohrschneider, L. R. Genomics 69, 104–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Sirard, C. et al. J. Biol. Chem. 275, 2063–2070 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Lebrun, J. J., Takabe, K., Chen, Y. & Vale, W. Mol. Endocrinol. 13, 15–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Macias-Silva, M. et al. Cell 87, 1215–1224 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, X. et al. Proc. Natl Acad. Sci. USA 94, 10669–10674 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krystal, G. et al. Int. J. Biochem. Cell Biol. 31, 1007–1010 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Huber, M. et al. EMBO J. 17, 7311–7319 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loomis-Husselbee, J. W., Cullen, P. J., Dreikausen, U. E., Irvine, R. F. & Dawson, A. P. Biochem. J. 314, 811–816 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scheid, M. P. & Woodgett, J. R. Nature Rev. Mol. Cell Biol. 2, 760–768 (2001).

    Article  CAS  Google Scholar 

  25. Aman, M. J., Lamkin, T. D., Okada, H., Kurosaki, T. & Ravichandran, K. S. J. Biol. Chem. 273, 33922–33928 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Helgason, C. D. et al. Genes Dev. 12, 1610–1620 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ono, M. et al. Cell 90, 293–301 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Geier, S. J. et al. Blood 89, 1876–1885 (1997).

    CAS  PubMed  Google Scholar 

  29. Bourgin, C. et al. Mol. Cell. Biol. 22, 3744–3756 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Y. Eto and Ajinomoto Co. Inc. for activin, J. Wrana and L. Attisano for ARE-Lux and ΔN-Smad2, H. Lodish for ΔN-Smad3, C. Sirard for the Smad4 −/− embryonic fibroblast cells, J.V. Ravetch for the DT-40 SHIP −/− and DT-40 SHP1 −/− cells, M. Rauh for preparing the SHIP +/+ and SHIP −/− bone-marrow-derived macrophages and B. Morin for the human lymphocytes preparation. H. Valderrama is supported by a fellowship from Consejo Nacional de Cienca Tecnologia, Mexico. S. Ali is a National Cancer Institute of Canada (NCIC) scholar and J. J. Lebrun is a Canadian Institute for Health Research (CIHR) scholar. This work was supported by grants from the CIHR (to J.J.L. and to S.A.), from the NCIC with core support from the British Columbia Cancer Foundation and the British Columbia Cancer Agency (to G.K.), from the Leukemia Research Funds of Canada (to J.J.L.) and from the Anemia Institute for Research and Education (to J.J.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Lebrun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures

Fig.S1 Activin and TGFβ induce apoptosis in hematopoietic cells. (PDF 37 kb)

Fig.S2 Activin-induced SHIP expression in B9 cells antagonizes AKT phosphorylation in response to IL-6 on both Thr308 and Ser 473.

Fig.S3 Inhibition of expression of the lipid phosphatase SHIP prevents TGFβ- induced apoptosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valderrama-Carvajal, H., Cocolakis, E., Lacerte, A. et al. Activin/TGF-β induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat Cell Biol 4, 963–969 (2002). https://doi.org/10.1038/ncb885

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb885

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing