Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella

Abstract

Salmonella invades mammalian cells by inducing membrane ruffling and macropinocytosis through actin remodelling. Because phosphoinositides are central to actin assembly, we have studied the dynamics of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) in HeLa cells during invasion by Salmonella typhimurium. Here we show that the outermost parts of the ruffles induced by invasion show a modest enrichment in PtdIns(4,5)P2, but that PtdIns(4,5)P2 is virtually absent from the invaginating regions. Rapid disappearance of PtdIns(4,5)P2 requires the expression of the Salmonella phosphatase SigD (also known as SopB). Deletion of SigD markedly delays fission of the invaginating membranes, indicating that elimination of PtdIns(4,5)P2 may be required for rapid formation of Salmonella-containing vacuoles. Heterologous expression of SigD is sufficient to promote the disappearance of PtdIns(4,5)P2, to reduce the rigidity of the membrane skeleton, and to induce plasmalemmal invagination and fission. Hydrolysis of PtdIns(4,5)P2 may be a common and essential feature of membrane fission during several internalization processes including invasion, phagocytosis and possibly endocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of Salmonella on PtdIns(4,5)P2 in HeLa cells.
Figure 2: Use of FM4-64 to visualize the plasmalemma during Salmonella invasion.
Figure 3: Effect of Salmonella deficient in either SigD or SopE and SopE2 on PtdIns(4,5)P2.
Figure 4: Role of SigD in the elimination of PtdIns(4,5)P2.
Figure 5: Transfection of SigD into mammalian cells.
Figure 6: Detection of PtdIns(4,5)P2 using monoclonal antibodies.
Figure 7: SigD alters membrane elasticity and induces vacuole formation.
Figure 8: Effect of SigD on Salmonella vacuole sealing.

Similar content being viewed by others

References

  1. Parker, C., Asokan, K. & Guard-Petter, J. Egg contamination by Salmonella serovar enteritidis following vaccination with δ-aroA Salmonella serovar typhimurium. FEMS Microbiol. Lett. 195, 73–78 (2001).

    CAS  PubMed  Google Scholar 

  2. Dworkin, M. S., Shoemaker, P. C., Goldoft, M. J. & Kobayashi, J. M. Reactive arthritis and Reiter's syndrome following an outbreak of gastroenteritis caused by Salmonella enteritidis. Clin. Infect. Dis. 33, 1010–1014 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Galan, J. E. & Zhou, D. Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc. Natl Acad. Sci. USA 97, 8754–8761 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Friebel, A. et al. SopE and SopE2 from Salmonella typhimurium activate different sets of Rho GTPases of the host cell. J Biol Chem 276, 34035–40. (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, D., Chen, L. M., Hernandez, L., Shears, S. B. & Galan, J. E. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39, 248–259 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Marcus, S. L., Wenk, M. R., Steele-Mortimer, O. & Finlay, B. B. A synaptojanin-homologous region of Salmonella typhimurium SigD is essential for inositol phosphatase activity and Akt activation. FEBS Lett. 494, 201–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Fu, Y. & Galan, J. E. A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Stebbins, C. E. & Galan, J. E. Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol. Cell 6, 1449–1460 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Honda, A. et al. Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42- dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, F. et al. Cdc42 is required for PIP2-induced actin polymerization and early development but not for cell viability. Curr. Biol. 10, 758–765 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Sechi, A. S. & Wehland, J. The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P2 influences cytoskeletal protein activity at the plasma membrane. J. Cell Sci. 113, 3685–3695 (2000).

    CAS  PubMed  Google Scholar 

  13. Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E. & Majerus, P. W. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl Acad. Sci. USA 95, 14057–14059 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stauffer, T. P., Ahn, S. & Meyer, T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr. Biol. 8, 343–346 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Varnai, P. & Balla, T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell Biol. 143, 501–510 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raucher, D. et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100, 221–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Teruel, M. N., Blanpied, T. A., Shen, K., Augustine, G. J. & Meyer, T. A versatile microporation technique for the transfection of cultured CNS neurons. J. Neurosci. Methods 93, 37–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Criss, A. K., Ahlgren, D. M., Jou, T. S., McCormick, B. A. & Casanova, J. E. The GTPase Rac1 selectively regulates Salmonella invasion at the apical plasma membrane of polarized epithelial cells. J. Cell Sci. 114, 1331–1341 (2001).

    CAS  PubMed  Google Scholar 

  19. Tolias, K. & Carpenter, C. L. In vitro interaction of phosphoinositide-4-phosphate 5-kinases with Rac. Methods Enzymol. 325, 190–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Weernink, P. A. et al. Control of cellular phosphatidylinositol 4,5-bisphosphate levels by adhesion signals and rho GTPases in NIH 3T3 fibroblasts involvement of both phosphatidylinositol-4-phosphate 5-kinase and phospholipase C. Eur. J. Biochem. 267, 5237–5246 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Jepson, M. A., Kenny, B. & Leard, A. D. Role of sipA in the early stages of Salmonella typhimurium entry into epithelial cells. Cell Microbiol. 3, 417–426 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Steele-Mortimer, O. et al. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J. Biol. Chem. 275, 37718–37724 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Kontos, C. D. et al. Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt. Mol. Cell Biol. 18, 4131–4140 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Watton, S. J. & Downward, J. Akt/PKB localisation and 3′ phosphoinositide generation at sites of epithelial cell–matrix and cell–cell interaction. Curr. Biol. 9, 433–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi, A. et al. Production of β-defensin-2 by human colonic epithelial cells induced by Salmonella enteritidis flagella filament structural protein. FEBS Lett. 508, 484–488 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Gewirtz, A. T. et al. Salmonella typhimurium induces epithelial IL-8 expression via Ca2+- mediated activation of the NF-κB pathway. J. Clin. Invest. 105, 79–92 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruschkowski, S., Rosenshine, I. & Finlay, B. B. Salmonella typhimurium induces an inositol phosphate flux in infected epithelial cells. FEMS Microbiol. Lett. 74, 121–126 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Pace, J., Hayman, M. J. & Galan, J. E. Signal transduction and invasion of epithelial cells by S. typhimurium. Cell 72, 505–514 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Oancea, E., Teruel, M. N., Quest, A. F. & Meyer, T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J. Cell Biol. 140, 485–498 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Botelho, R. J. et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353–1368 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, P., Xie, H. & Wells, A. Mitogenic signaling from the EGF receptor is attenuated by a phospholipase C-γ/protein kinase C feedback mechanism. Mol. Biol. Cell 7, 871–881 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eckmann, L. et al. D-myo-Inositol 1,4,5,6-tetrakisphosphate produced in human intestinal epithelial cells in response to Salmonella invasion inhibits phosphoinositide 3-kinase signaling pathways. Proc. Natl Acad. Sci. USA 94, 14456–60. (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feng, Y., Wente, S. R. & Majerus, P. W. Overexpression of the inositol phosphatase SopB in human 293 cells stimulates cellular chloride influx and inhibits nuclear mRNA export. Proc. Natl Acad. Sci. USA 98, 875–879 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Balla, T., Bondeva, T. & Varnai, P. How accurately can we image inositol lipids in living cells? Trends Pharmacol. Sci. 21, 238–241 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Surprenant, A., Rassendren, F., Kawashima, E., North, R. A. & Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735–738 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Laux, T. et al. GAP43, MARCKS, and CAP23 modulate PtdIns(4,5)P2 at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J. Cell Biol. 149, 1455–1472 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sheetz, M. P. Cell control by membrane-cytoskeleton adhesion. Nature Rev. Mol. Cell Biol. 2, 392–396 (2001).

    Article  CAS  Google Scholar 

  38. A-Hassan E. et al. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564–1578 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Galyov, E. E. et al. A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol. Microbiol. 25, 903–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Jost, M., Simpson, F., Kavran, J. M., Lemmon, M. A. & Schmid, S. L. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr. Biol. 8, 1399–1402 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Garcia-del Portillo, F., Pucciarelli, M. G., Jefferies, W. A. & Finlay, B. B. Salmonella typhimurium induces selective aggregation and internalization of host cell surface proteins during invasion of epithelial cells. J. Cell Sci. 107, 2005–2020 (1994).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Arthritis Society of Canada and the Canadian Institutes for Health Research. M.T. is the recipient of a Hospital for Sick Children Restracomp Fellowship. O.V.V. is the recipient of a postdoctoral fellowship from PRAXIS XX1. B.B.F and S.G. are recipients of Canadian Institutes for Health Research (CIHR) Distinguished Scientist Awards. S.G. is the current holder of the Pitblado Chair in Cell Biology at The Hospital for Sick Children and is cross-appointed to the Department of Biochemistry, University of Toronto. C.M.Y. is the holder of a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Grinstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Movie 1

Live imaging of HeLa cells during invasion by wildtype Salmonella enterica (serovar Typhimurium). (MOV 2714 kb)

Movie 2

Live imaging of HeLa cells during invasion by mutant Salmonella lacking SopB/SigD. (MOV 2988 kb)

Movie 3

Live imaging of HeLa cells during invasion by mutant Salmonella lacking SopE and SopE2 (MOV 2899 kb)

Legends to movies (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terebiznik, M., Vieira, O., Marcus, S. et al. Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat Cell Biol 4, 766–773 (2002). https://doi.org/10.1038/ncb854

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb854

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing