Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

De novo formation of transitional ER sites and Golgi structures in Pichia pastoris

Abstract

Transitional ER (tER) sites are ER subdomains that are functionally, biochemically and morphologically distinct from the surrounding rough ER. Here we have used confocal video microscopy to study the dynamics of tER sites and Golgi structures in the budding yeast Pichia pastoris. The biogenesis of tER sites is tightly linked to the biogenesis of Golgi, and both compartments can apparently form de novo. tER sites often fuse with one another, but they maintain a consistent average size through shrinkage after fusion and growth after de novo formation. Golgi dynamics are similar, although late Golgi elements often move away from tER sites towards regions of polarized growth. Our results can be explained by assuming that tER sites give rise to Golgi cisternae that continually mature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sec13–GFP labels a subdomain of the ER in P. pastoris.
Figure 2: tER sites form de novo and fuse with one another.
Figure 3: Golgi structures form and fuse in conjunction with associated tER sites.
Figure 4: De novo formation of Golgi structures visualized with a transmembrane protein.
Figure 5: Late Golgi elements are transported toward sites of polarized growth.
Figure 6: Model of tER site organization in P. pastoris.

Similar content being viewed by others

References

  1. Palade, G. Intracellular aspects of the process of protein synthesis. Science 189, 347–358 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Bannykh, S. I., Rowe, T. & Balch, W. E. The organization of endoplasmic reticulum export complexes. J. Cell Biol. 135, 19–35 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Antonny, B. & Schekman, R. ER export: public transportation by the COPII coach. Curr. Opin. Cell Biol. 13, 438–443 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hammond, A. T. & Glick, B. S. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol. Biol. Cell 11, 3013–3030 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stephens, D. J., Lin-Marq, N., Pagano, A., Pepperkok, R. & Paccaud, J.-P. COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. J. Cell Sci. 113, 2177–2185 (2000).

    CAS  PubMed  Google Scholar 

  6. Orci, L. et al. Mammalian Sec23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm. Proc. Natl Acad. Sci. USA 88, 8611–8615 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shaywitz, D. A., Orci, L., Ravazzola, M., Swaroop, A. & Kaiser, C. A. Human SEC13Rp functions in yeast and is located on transport vesicles budding from the endoplasmic reticulum. J. Cell Biol. 128, 769–777 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Tang, B. L. et al. The mammalian homolog of yeast Sec13p is enriched in the intermediate compartment and is essential for protein transport from the endoplasmic reticulum to the Golgi apparatus. Mol. Cell. Biol. 17, 256–266 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rossanese, O. W. et al. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J. Cell Biol. 145, 69–81 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glick, B. S. & Malhotra, V. The curious status of the Golgi apparatus. Cell 95, 883–889 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Becker, B. & Melkonian, M. The secretory pathway of protists: spatial and functional organization and evolution. Microbiol. Rev. 60, 697–721 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hager, K. M., Striepen, B., Tilney, L. G. & Roos, D. S. The nuclear envelope serves as an intermediary between the ER and Golgi complex in the intracellular parasite Toxoplasma gondii. J. Cell Sci. 112, 2631–2638 (1999).

    CAS  PubMed  Google Scholar 

  13. Paccaud, J.-P. et al. Cloning and functional characterization of mammalian homologues of the COPII component Sec23. Mol. Biol. Cell 7, 1535–1546 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bevis, B. J. & Glick, B. S. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotechnol. 20, 83–87 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Pelham, H. Sorting and retrieval between the endoplasmic reticulum and Golgi apparatus. Curr. Opin. Cell Biol. 7, 530–535 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Prinz, W. A. et al. Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae. J. Cell Biol. 150, 461–474 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hammond, A. T. & Glick, B. S. Raising the speed limits for 4D fluorescence microscopy. Traffic 1, 935–940 (2000).

    CAS  PubMed  Google Scholar 

  18. Siniossoglou, S. et al. A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell 84, 265–275 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Soderholm, J., Bevis, B. J. & Glick, B. S. A vector for pop-in/pop-out gene replacement in Pichia pastoris. BioTechniques 31, 306–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Waterham, H. R., Digan, M. E., Koutz, P. J., Lair, S. V. & Cregg, J. M. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and characterization of its promoter. Gene 186, 37–44 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Sears, I. B., O'Connor, J., Rossanese, O. W. & Glick, B. S. A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast 14, 783–790 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Franzusoff, A., Redding, K., Crosby, J., Fuller, R. S. & Schekman, R. Localization of components involved in protein transport and processing through the yeast Golgi apparatus. J. Cell Biol. 112, 27–37 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. McNew, J. A. et al. Gos1p, a Saccharomyces cerevisiae SNARE protein involved in Golgi transport. FEBS Lett. 435, 89–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Holthuis, J. C., Nichols, B. J., Dhruvakumar, S. & Pelham, H. R. Two syntaxin homologues in the TGN/endosomal system of yeast. EMBO J. 17, 113–126 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ward, T. H., Polishchuk, R. S., Caplan, S., Hirschberg, K. & Lippincott-Schwartz, J. Maintenance of Golgi structure and function depends on the integrity of ER export. J. Cell Biol. 155, 557–570 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Payne, W. E. et al. Isolation of Pichia pastoris genes involved in ER-to-Golgi transport. Yeast 16, 979–993 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Marshall, W. F. & Rosenbaum, J. L. Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J. Cell Biol. 155, 405–414 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Glick, B. S. Can the Golgi form de novo? Nat. Rev. Mol. Cell Biol. 3, 615–619 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Bracker, C. E., Morré, D. J. & Grove, S. N. Structure, differentiation and multiplication of Golgi apparatus in fungal hyphae. Protoplasma 194, 250–274 (1996).

    Article  Google Scholar 

  31. Rossanese, O. W. & Glick, B. S. Deconstructing Golgi inheritance. Traffic 2, 589–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Wooding, S. & Pelham, H. R. B. The dynamics of Golgi protein traffic visualized in living yeast cells. Mol. Biol. Cell 9, 2667–2680 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morin-Ganet, M.-N., Rambourg, A., Deitz, S. B., Franzusoff, A. & Képès, F. Morphogenesis and dynamics of the yeast Golgi apparatus. Traffic 1, 56–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Rossanese, O. W. et al. A role for actin, Cdc1p and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J. Cell Biol. 153, 47–61 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Misteli, T. The concept of self-organization in cellular architecture. J. Cell Biol. 155, 181–185 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mollenhauer, H. H. & Morré, D. J. Structural compartmentation of the cytosol: zones of exclusion, zones of adhesion, cytoskeletal and intercisternal elements. Subcell. Biochem. 5, 327–359 (1978).

    Article  CAS  PubMed  Google Scholar 

  37. Staehelin, L. A. & Moore, I. The plant Golgi apparatus: structure, functional organization and trafficking mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 261–288 (1995).

    Article  CAS  Google Scholar 

  38. Seemann, J., Jokitalo, E., Pypaert, M. & Warren, G. Matrix proteins can generate the higher order architecture of the Golgi apparatus. Nature 407, 1022–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Miles, S., McManus, H., Forsten, K. E. & Storrie, B. Evidence that the entire Golgi apparatus cycles in interphase HeLa cells: sensitivity of Golgi matrix proteins to an ER exit block. J. Cell Biol. 155, 543–556 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seemann, J., Pypaert, M., Taguchi, T., Malsam, J. & Warren, G. Partitioning of the matrix fraction of the Golgi apparatus during mitosis in animal cells. Science 295, 848–851 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Barr, F. A. The Golgi apparatus: going round in circles? Trends Cell Biol. 12, 101–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Lowe, M. Golgi complex: biogenesis de novo? Curr. Biol. 12, R166–R167 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Gould, S. J., McCollum, D., Spong, A. P., Heyman, J. A. & Subramani, S. Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast 8, 613–628 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Sherman, F. Getting started with yeast. Methods Enzymol. 194, 3–21 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Russ, J. C. The Image Processing Handbook, 3rd edn (CRC, Boca Raton, FL, 1999).

    Google Scholar 

Download references

Acknowledgements

We thank T. Karr, C. Lassy, Y. Gottlieb, V. Bindokas and R. Blocker for support with confocal imaging; J. Soderholm for the Sec13–GFP construct; D. Strongin for improving the GFP–Gos1 expression plasmid; and S. Mogelsvang, A. Staehelin and the members of the Glick lab for suggestions. This work was supported by grants from the American Cancer Society, the NIH and the Pew Charitable Trusts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin S. Glick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Movie 1

P. pastoris cells containing Sec13p-GFP-labeled tER sites were imaged for ~ 33 min. Several de novo formation and fusion events can be seen. Weak nuclear fluorescence is also visible. This movie is accelerated 60-fold relative to real time. (MOV 4192 kb)

Movie 2

P. pastoris cells containing Sec13p-GFP-labeled tER sites were imaged for ~ 30 min. Several de novo formation and fusion events can be seen, particularly in the cell on the lower left. Weak nuclear fluorescence is also visible. This movie is accelerated 60-fold relative to real time. (MOV 3597 kb)

Movie 3

P. pastoris cells containing Sec13p-GFP-labeled tER sites and Sec7p-DsRed-labeled Golgi structures were imaged for ~ 14 min. The formation and growth of new Golgi structures is linked to that of the associated tER sites, as seen most clearly in the pair of cells on the left. This movie is accelerated 60-fold relative to real time. (MOV 1332 kb)

Movie 4

P. pastoris cells containing Sec13p-GFP-labeled tER sites and Sec7p-DsRed-labeled Golgi structures were imaged for ~ 15 min. In the cell on the left, two tER sites fuse, and the associated Golgi structures also fuse. This movie is accelerated 60-fold relative to real time. (MOV 903 kb)

Movie 5

P. pastoris cells containing GFP-Gos1p-labeled Golgi structures were imaged for ~ 21 min. Several de novo formation and fusion events can be seen, particularly in the cell on the lower left. This movie is accelerated 60-fold relative to real time. (MOV 2644 kb)

Movie 6

P. pastoris cells containing containing Sec13p-GFP-labeled tER sites and Sec7p-DsRed-labeled Golgi structures were imaged for ~ 4 min. In the cell on the left, a Golgi structure moves away from its associated tER site toward the bud. This movie is accelerated 12-fold relative to real time. (MOV 244 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bevis, B., Hammond, A., Reinke, C. et al. De novo formation of transitional ER sites and Golgi structures in Pichia pastoris. Nat Cell Biol 4, 750–756 (2002). https://doi.org/10.1038/ncb852

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing