Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

β-Arrestins regulate a Ral-GDS–Ral effector pathway that mediates cytoskeletal reorganization

Abstract

β-Arrestins are important in chemoattractant receptor-induced granule release, a process that may involve Ral-dependent regulation of the actin cytoskeleton. We have identified the Ral GDP dissociation stimulator (Ral-GDS) as a β-arrestin-binding protein by yeast two-hybrid screening and co-immunoprecipitation from human polymorphonuclear neutrophilic leukocytes (PMNs). Under basal conditions, Ral-GDS is localized to the cytosol and remains inactive in a complex formed with β-arrestins. In response to formyl-Met-Leu-Phe (fMLP) receptor stimulation, β-arrestin–Ral-GDS protein complexes dissociate and Ral-GDS translocates with β-arrestin from the cytosol to the plasma membrane, resulting in the Ras-independent activation of the Ral effector pathway required for cytoskeletal rearrangement. The subsequent re-association of β-arrestin–Ral-GDS complexes is associated with the inactivation of Ral signalling. Thus, β-arrestins regulate multiple steps in the Ral-dependent processes that result in chemoattractant-induced cytoskeletal reorganization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of Ral-GDS as a β-arrestin-interacting protein.
Figure 2: Characterization of fMLP-receptor-induced membrane ruffling.
Figure 3: fMLP-receptor-stimulated membrane ruffling in RBL-2H3 cells.
Figure 4: fMLP-receptor-stimulated binding of 35S-GTP-γS to RalA.
Figure 5: fMLP-receptor-stimulated dissociation of β-arrestin–Ral-GDS protein complexes.
Figure 6: fMLP-receptor-stimulated plasma membrane translocation of GFP–Ral-GDS.
Figure 7: Structure–function analysis of Ral-GDS activity.
Figure 8: A model illustrating the regulation of Ral-GDS by β-arrestins.

Similar content being viewed by others

References

  1. Lauffenburger, D. & Horwitz, A. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Sandborg, R. & Smolen, J. Early biochemical events in leukocyte activation. Lab. Invest. 59, 300–320 (1988).

    CAS  PubMed  Google Scholar 

  3. Schiffmann, E. et al. The isolation and partial characterization of neutrophil chemotactic factors from E. coli. J. Immunol. 114, 1831–1837 (1975).

    CAS  PubMed  Google Scholar 

  4. Witko-Sarsat, V., Rieu, P., Descamps-Latscha, B., Lesavre, P. & Halbwachs-Mecarelli, L. Neutrophils: molecules, functions, and pathophysiological aspects. Lab. Invest. 80, 617–653 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Weiner, O. D. et al. Spatial control of actin polymerization during neutrophil chemotaxis. Nature Cell Biol. 1, 75–81 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Barlic, J. et al. Regulation of tyrosine kinase activation and granule release through β-arrestin by CXCR1 Nature Immunol. 1, 227–233 (2000).

    Article  CAS  Google Scholar 

  7. M'Rabet, L. et al. Differential fMet-Leu-Phe- and platelet-activating factor-induced signaling toward Ral activation in primary human neutrophils. J. Biol. Chem. 274, 21847–21852 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Takai, Y., Sasaki, T. & Matozaki, M. Small GTP-binding proteins. Physiol. Rev. 81, 153–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Brymora, A., Valova, V. A., Larsen, M. R., Roufogalis, B. D. & Robinson, P. J. The brain exocyst complex interacts with RalA in a GTP-dependent manner: identification of a novel mammalian Sec3 gene and a second Sec15 gene. J. Biol. Chem. 276, 29792–29797 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Volknandt, W., Pevsner, J., Elferink, L. A. & Scheller, R. H. Association of three small GTP-binding proteins with cholinergic synaptic vesicles. FEBS Lett. 317, 53–56 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Mark, B., Jilkina, O. & Bhullar, R. P. Association of Ral GTP-binding protein with human platelet dense granules. Biochem. Biophys. Res. Commun. 225, 40–46 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. de Leeuw, H. P. et al. Small GTP-binding protein Ral modulates regulated exocytosis of von Willebrand factor by endothelial cells. Arterioscler. Throm. Vasc. Biol. 21, 899–904 (2001).

    Article  CAS  Google Scholar 

  13. de Leeuw, H. P., Wijers-Koster, P. M., van Mourik, J. A. & Voorberg J. Small GTP-binding protein RalA associates with Weibel-Palade bodies in endothelial cells. Thromb. Haemost. 82, 1177–1181 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Nakashima, S. et al. Small G protein Ral and its downstream molecules regulate endocytosis of EGF and insulin receptors. EMBO J. 18, 3629–3642 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sawamoto, K. et al. Ectopic expression of constitutively activated Ral GTPase inhibits cell shape changes during Drosophila eye development. Oncogene 18, 1967–1974 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, T., Feig, L. & Montell, D. J. Two distinct roles for Ras in developmentally regulated cell migration. Development 122, 409–418 (1996).

    CAS  PubMed  Google Scholar 

  17. Suzuki, J. et al. Involvement of Ras and Ral in chemotactic migration of skeletal myoblasts. Mol. Cell. Biol. 20, 4658–1665 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goi, T. et al. An EGF receptor/Ral-GTPase signaling cascade regulates c-Src activity and substrate specificity. EMBO J. 19, 623–630 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frankel, P. et al. Ral and Rho-dependent activation of phospholipase D in v-Raf transformed cells. Biochem. Biophys. Res. Commun. 255, 502–507 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Jiang, H. et al. Involvement of Ral GTPase in v-Src induced phospholipase D activation. Nature 378, 409–412 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Albright, C. F., Giddings, B. W., Liu, J., Vito, M. & Weinberg, R. A. Characterization of a guanine nucleotide dissociation stimulator for a Ras-related GTPase. EMBO J. 12, 339–337 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wolthuis, R et al. Ras-dependent activation of the small GTPase Ral. Curr. Biol. 18, 471–474 (1998).

    Article  Google Scholar 

  23. Hofer, F. et al. Ras-independent activation of Ral by a Ca2+-dependent pathway. Curr. Biol. 8, 839–842 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Santini, F., Penn, R. B., Gagnon, A. W., Benovic, J. L. & Keen, J. H. Selective recruitment of arrestin-3 to clathrin coated pits upon stimulation of G protein-coupled receptors. J. Cell Sci. 113, 2463–2470 (2000).

    CAS  PubMed  Google Scholar 

  25. Ohta, Y., Suzuki, N., Nakamura, S., Hartwig, J. H. & Stossel, T. P. The small GTPase RalA targets filamin to induce filopodia. Proc. Natl Acad. Sci. USA 96, 2122–2128 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Glogauer, M., Hartwig, J. & Stossel, T. Two pathways through Cdc42 couple the N-formyl receptor to actin nucleation in permeabilized human neutrophils. J. Cell Biol. 150, 785–796 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hartt, J. K., Barish, G., Murphy, P. M. & Gao, J. L. N-formylpeptides induce two distinct concentration optima for mouse neutrophil chemotaxis by differential interaction with two N-formylpeptide receptor (FPR) subtypes. Molecular characterization of FPR2, a second mouse neutrophil FPR. J. Exp. Med. 190, 741–747 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Su, S. et al. A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J. Exp. Med. 189, 395–402 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferguson, S. S. G. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53, 1–24 (2001).

    CAS  PubMed  Google Scholar 

  30. Matsubara, K. et al. Plasma membrane recruitment of RalGDS is critical for Ras-independent Ral activation. Oncogene 18, 1303–1312 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Rosario, M., Paterson, H. F., & Marshall, C. J. Activation of the Ral and phosphatidylinositol 3′ kinase signaling pathways by the ras-related protein TC21. Mol. Cell. Biol. 21, 3750–3762 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hirsch, J. A., Schubert, C., Gurevich, V. V. & Sigler, P. B. The 2.8 Å crystal structure of visual arrestin: a model for arrestin's regulation. Cell 97, 257–269 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Chung, C. Y., Lee, S., Briscoe, C., Ellsworth, C. & Firtel, R. A. Role of Rac in controlling the actin cytoskeleton and chemotaxis in motile cells. Proc. Natl Acad. Sci. USA 97, 5225–5230 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quinn, M. T. Low-molecular-weight GTP-binding proteins and leukocyte signal transduction. Leukocyte Biol. 58, 263–276 (1995).

    Article  CAS  Google Scholar 

  35. Fong, A. M. et al. Defective lymphocyte chemotaxis in β-arrestin2- and GRK6-deficient mice. Proc. Natl Acad. Sci. USA 99, 7478–7483 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferguson, S. S. G. et al. Role of β-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363–366 (1995).

    Article  Google Scholar 

  37. Luttrell, L. et al. β-Arrestin-dependent formation of β2 adrenergic receptor–Src protein kinase complexes. Science 283, 655–661 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. DeFea, K. A. et al. β-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell. Biol. 148, 1267–1281 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miller, W. E. et al. β-Arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of β-arrestin1-dependent targeting of c-SRC in receptor endocytosis. J. Biol. Chem. 275, 11312–11319 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. McDonald, P. H. et al. β-Arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290, 1574–1577 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Luttrell, L. M. et al. Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds. Proc. Natl Acad. Sci. USA 98, 2449–2454 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Claing, A. et al. β-Arrestin-mediated ADP-ribosylation factor 6 activation and β2-adrenergic receptor endocytosis. J. Biol. Chem. 276, 42509–42513 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Wenzel-Seifert, K., Lentzen, H., Aktories, K. & Seifert, R. Complex regulation of human neutrophil activation by actin filaments: dihydrocytochalasin B and botulinum C2 toxin uncover the existence of multiple cation entry pathways. J. Leukocyte Biol. 61, 703–711 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Rothwell, S. W., Nath, J. & Wright, D. G. Interactions of cytoplasmic granules with microtubules in human neutrophils. J. Cell Biol. 108, 2313–2326 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Bai, C. & Elledge, S. J. Gene identification using the yeast two-hybrid system. Methods Enzymol. 283, 141–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, Q. et al. Effect of decaglycerol mono-oleate on chemiluminescence of human neutrophils. Luminescence 14, 327–330 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Seachrist, J. L. et al. Rab5 association with the angiotensin II Type 1A receptor promotes Rab5 GTP-binding and vesicular fusion. J. Biol. Chem. 277, 679–685 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732–735 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Kubu, E. Li, C. Godin and A. Shin for technical assistance. We thank L. Limbird for helpful discussions. M.B. is the recipient of a Canadian Institutes of Health Research (CIHR) Fellowship, A.V.B. is the recipient of a Canadian Hypertension Society/CIHR Fellowship, J.M.V. is a CIHR Scholar, R.D.F. holds a Heart and Stroke Foundation of Ontario (HSFO) Career Scientist Award and S.S.G.F. is the recipient of Heart and Stroke Foundation of Canada MacDonald Scholarship, Premier's Research Excellence Award and Canada Research Chair in Molecular Neuroscience. This work was supported by HSFO grant T4987 and CIHR grant MA-15506 to S.S.G.F, CIHR MT-10864 to R.J.R. and CIHR grant 43959 to R.D.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen S. G. Ferguson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary movie

Time-lapse recording of membrane ruffling in response to fMLP receptor activation. Shown are two HEK 293 cells, one cell expresses GFP-tagged fMLP receptor (green) alone and the other cell co-expresses Ds-Red1-tagged Ral-GDS clone 284 (red) with GFP-tagged fMLP receptor. The cells correspond to the micrograph presented in Fig. 2b. Membrane ruffling is initiated in the cell lacking Ds-Red1- tagged Ral-GDS clone 284 by the addition of 100 nM fMLP to the dish. The movie is comprised of a time series of 133 confocal images scanned at 15 s intervals. The footage is repeated twice and the presentation speed is accelerated 60 times normal (1s = 1min). (AVI 4483 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, M., Anborgh, P., Babwah, A. et al. β-Arrestins regulate a Ral-GDS–Ral effector pathway that mediates cytoskeletal reorganization. Nat Cell Biol 4, 547–555 (2002). https://doi.org/10.1038/ncb821

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb821

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing