Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The Vps27p–Hse1p complex binds ubiquitin and mediates endosomal protein sorting

Abstract

Membrane proteins that are degraded in the vacuole of Saccharomyces cerevisiae are sorted into discrete intralumenal vesicles, analogous to the internal membranes of multi-vesiculated bodies (MVBs). Recently, it has shown that the attachment of ubiquitin (Ub) mediates sorting into lumenal membranes1. We describe a complex of Vps27p and Hse1p that localizes to endosomal compartments and is required for the recycling of Golgi proteins, formation of lumenal membranes and sorting of ubiquitinated proteins into those membranes. The Vps27p–Hse1p complex binds to Ub and requires multiple Ub Interaction Motifs (UIMs). Mutation of these motifs results in specific defects in the sorting of ubiquitinated proteins into the vacuolar lumen. However, the recycling of Golgi proteins and the generation of lumenal membranes proceeds normally in Δ UIM mutants. These data support a model in which the Vps27p–Hse1p complex has multiple functions at the endosome, one of which is as a sorting receptor for ubiquitinated membrane proteins destined for degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deletion of HSE1 results in a class E Vps phenotype.
Figure 2: Hse1p localizes to endocytic compartments and forms a complex with Vps27p.
Figure 3: The consequence of UIM mutations on Vps27p–Hse1p function.
Figure 4: CPY sorting and intravacuolar lipid sorting are normal in ΔUIM mutant cells.

Similar content being viewed by others

References

  1. Hicke, L. Cell 106, 527–530 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Piper, R. C. & Luzio, J. P. Traffic 2, 612–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Asao, H. et al. J. Biol. Chem. 272, 32785–32791 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Takata, H., Kato, M., Denda, K. & Kitamura, N. Genes Cells 5, 57–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Lohi, O. et al. J. Biol. Chem. 273, 21408–21415 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Piper, R. C., Cooper, A. A., Yang, H. & Stevens, T. H. J. Cell Biol. 131, 603–617 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Cooper, A. A. & Stevens, T. H. J. Cell Biol. 133, 529–541 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, L. & Davis, N. G. Traffic 3, 110–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Komada, M. & Kitamura, N. Biochem. Biophys. Res. Commun. 281, 1065–1069 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Uetz, P. et al. Nature 403, 623–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Dell'Angelica, E. C. & Payne, G. S. Cell 106, 395–398 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Hofmann, K. & Falquet, L. Trends Biochem. Sci. 26, 347–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Lloyd, T. E. et al. J. Cell 108, 261–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Polo, S. et al. Nature 416, 451–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Shih, S. C. et al. Nature Cell Biol. 4, 389–393 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Raiborg, C. et al. Nature Cell Biol. 4,394–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Urbanowski, J. L. & Piper, R. C. J. Biol. Chem. 274, 38061–38070 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Urbanowski, J. L. & Piper, R. C. Traffic 2, 622–630 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Simeon, A., van der Klei, I. J., Veenhuis, M. & Wolf, D. H. FEBS Lett. 301, 231–235 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Grant, A. M., Hanson, P. K., Malone, L. & Nichols, J. W. Traffic 2, 37–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Kean, L. S. et al. J. Cell Biol. 138, 255–270 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reggiori, F. & Pelham, H. R. EMBO J. 20, 5176–5186 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Katzmann, D. J., Babst, M. & Emr, S. D. Cell 106, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Stevens, T. H., Rothman, J. H., Payne, G. S. & Schekman, R. J. Cell Biol. 102, 1551–1557 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Raymond, C. K., Howald-Stevenson, I., Vater, C. A. & Stevens, T. H. Mol. Biol. Cell 3, 1389–1402 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sikorski, R. S. & Hieter, P. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mullock, B. M. et al. Mol. Cell. Biol. 11, 3137–3153 (2000).

    Article  CAS  Google Scholar 

  28. Smith, D. B. & Johnson, K. S. Gene 67, 31–40 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, J. & Wilkinson, M. F. Biotechniques 29, 976–978 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Piper, R. C., Bryant, N. J. & Stevens, T. H. J. Cell Biol. 138, 531–545 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Moye-Rowley, B. Cohen, T. Stevens and L. Weisman for helpful suggestions. We also thank the University of Iowa Central Microscopy Facility for technical assistance with electron microscopy. This work was supported by National Institutes of Health grant RO1 GM58202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Piper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures

Figure 1. Hse1-GFP function and Immunolocalization of Vps27 in hse1 mutant cells. a, The (PDF 333 kb)

Figure 2. The Ub-independent sorting of Sna3-GFP is normal in ΔUIM cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilodeau, P., Urbanowski, J., Winistorfer, S. et al. The Vps27p–Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nat Cell Biol 4, 534–539 (2002). https://doi.org/10.1038/ncb815

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing