Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myosin X is a downstream effector of PI(3)K during phagocytosis

Abstract

Phagocytosis is a phosphatidylinositol-3-OH-kinase (PI(3)K)-dependent process in macrophages. We identified Myo10 (Myosin-X), an unconventional myosin with pleckstrin homology (PH) domains, as a potential downstream target of PI(3)K. Myo10 was recruited to phagocytic cups in a wortmannin-sensitive manner. Expression of a truncation construct of Myo10 (Myo10 tail) in a macrophage cell line or cytosolic loading of anti-Myo10 antibodies in bovine alveolar macrophages inhibited phagocytosis. In contrast, expression of a Myo10 tail construct containing a point mutation in one of its PH domains failed to inhibit phagocytosis. Expression of Myo10 tail inhibited spreading, but not adhesion, on IgG-coated substrates, consistent with a function for Myo10 in pseudopod extension. We propose that Myo10 provides a molecular link between PI(3)K and pseudopod extension during phagocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myo10 is present in macrophages.
Figure 2: Myo10 is localized to phagocytic cups.
Figure 3: Myo10 is recruited to phagocytic cups in a PI(3)K-dependent manner.
Figure 4: Intact Myo10 function is required for FcγR-mediated phagocytosis.
Figure 5: Myo10 tail is present in phagocytic cups.
Figure 6: Expression of Myo10 tail does not inhibit Rac1- or Cdc42-mediated actin assembly.
Figure 7: Inhibition of phagocytosis by Myo10 tail expression is dependent on particle size.
Figure 8: Expression of Myo10 tail inhibits spreading, but not adhesion, of macrophages on IgG-coated substrates.

Similar content being viewed by others

References

  1. Greenberg, S. Modular components of phagocytosis. J. Leuk. Biol. 66, 712–717 (1999).

    Article  CAS  Google Scholar 

  2. Greenberg, S. Fc receptor-mediated phagocytosis in Phagocytosis: The Host, Vol. 5 (ed. Gordon, S.) 149–191 (JAI, Stamford, 1999).

    Google Scholar 

  3. Ninomiya, N. et al. Involvement of phosphatidylinositol 3-kinase in Fcγ receptor signaling. J. Biol. Chem. 269, 22732–22737 (1994).

    CAS  PubMed  Google Scholar 

  4. Cox, D., Tseng, C.-C., Bjekic, G. & Greenberg, S. A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J. Biol. Chem. 274, 1240–1247 (1999).

    Article  CAS  Google Scholar 

  5. Marshall, J. G. et al. Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fcγreceptor-mediated phagocytosis. J. Cell Biol. 153, 1369–1380 (2001).

    Article  CAS  Google Scholar 

  6. Cox, D., Dale, B. M., Kashiwada, M., Helgason, C. D. & Greenberg, S. A regulatory role for Src homology 2 domain-containing inositol 5′- phosphatase (SHIP) in phagocytosis mediated by Fc γ receptors and complement receptor 3 (αMβ2; CD11b/CD18). J. Exp. Med. 193, 61–71 (2001).

    Article  CAS  Google Scholar 

  7. Isakoff, S. J. et al. Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J. 17, 5374–5387 (1998).

    Article  CAS  Google Scholar 

  8. Allen, L. A. H. & Aderem, A. A role for MARCKS, the α isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J. Exp. Med. 182, 829–840 (1995).

    Article  CAS  Google Scholar 

  9. Swanson, J. A. et al. A contractile activity that closes phagosomes in macrophages. J. Cell Sci. 112, 307–316 (1999).

    CAS  PubMed  Google Scholar 

  10. Jung, G., Wu, X. & Hammer, J. A. 3rd. Dictyostelium mutants lacking multiple classic myosin I isoforms reveal combinations of shared and distinct functions. J. Cell Biol. 133, 305–323 (1996).

    Article  CAS  Google Scholar 

  11. Titus, M. A. A class VII unconventional myosin is required for phagocytosis. Curr. Biol. 9, 1297–1303 (1999).

    Article  CAS  Google Scholar 

  12. Tuxworth, R. I. et al. A role for myosin VII in dynamic cell adhesion. Curr. Biol. 11, 318–329 (2001).

    Article  CAS  Google Scholar 

  13. Hodge, T. & Cope, M. J. A myosin family tree. J. Cell Sci. 113, 3353–3354 (2000).

    CAS  PubMed  Google Scholar 

  14. Hasson, T. et al. Effects of shaker-1 mutations on myosin-VIIa protein and mRNA expression. Cell Motil. Cytoskeleton 37, 127–138 (1997).

    Article  CAS  Google Scholar 

  15. Chen, Z. Y. et al. Myosin-VIIb, a novel unconventional myosin, is a constituent of microvilli in transporting epithelia. Genomics 72, 285–296 (2001).

    Article  CAS  Google Scholar 

  16. Berg, J. S., Derfler, B. H., Pennisi, C. M., Corey, D. P. & Cheney, R. E. Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J. Cell Sci. 113, 3439–3451 (2000).

    CAS  Google Scholar 

  17. Berg, J. S. & Cheney, R. E. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nature Cell Biol. 4, 246–250 (2002).

    Article  CAS  Google Scholar 

  18. Salim, K. et al. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. EMBO J. 15, 6241–6250 (1996).

    Article  CAS  Google Scholar 

  19. Fukuda, M. & Mikoshiba, K. Structure–function relationships of the mouse Gap1m. Determination of the inositol 1,3,4,5-tetrakisphophate-binding domain. J. Biol. Chem. 271, 18838–18842 (1996).

    Article  CAS  Google Scholar 

  20. Araki, N., Johnson, M. T. & Swanson, J. A. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J. Cell Biol. 135, 1249–1260 (1996).

    Article  CAS  Google Scholar 

  21. Izzard, C. S. & Lochner, L. R. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J. Cell Sci. 21, 129–159 (1976).

    CAS  PubMed  Google Scholar 

  22. Berg, J. S., Powell, B. C. & Cheney, R. E. A millennial myosin census. Mol. Biol. Cell 12, 780–794 (2001).

    Article  CAS  Google Scholar 

  23. Jung, G., Wu, X. & Hammer, J. A. 3rd. Dictyostelium mutants lacking multiple classic myosin I isoforms reveal combinations of shared and distinct functions. J. Cell Biol. 133, 305–323 (1996).

    Article  CAS  Google Scholar 

  24. Neuhaus, E. M. & Soldati, T. A myosin I is involved in membrane recycling from early endosomes. J. Cell Biol. 150, 1013–1026 (2000).

    Article  CAS  Google Scholar 

  25. Schwarz, E. C., Neuhaus, E. M., Kistler, C., Henkel, A. W. & Soldati, T. Dictyostelium myosin IK is involved in the maintenance of cortical tension and affects motility and phagocytosis. J. Cell Sci. 113, 621–633 (2000).

    CAS  PubMed  Google Scholar 

  26. Wu, C. et al. Activation of myosin-I by members of the Ste20p protein kinase family. J. Biol. Chem. 271, 31787–31790 (1996).

    Article  CAS  Google Scholar 

  27. Szczepanowska, J. et al. Identification by mass spectrometry of the phosphorylated residue responsible for activation of the catalytic domain of myosin I heavy chain kinase, a member of the PAK/STE20 family. Proc. Natl Acad. Sci. USA 94, 8503–8508 (1997).

    Article  CAS  Google Scholar 

  28. Mansfield, P. J., Shayman, J. A. & Boxer, L. A. Regulation of polymorphonuclear leukocyte phagocytosis by myosin light chain kinase after activation of mitogen-activated protein kinase. Blood 95, 2407–2412 (2000).

    CAS  PubMed  Google Scholar 

  29. de Lanerolle, P., Gorgas, G. X. L., & Schluns, K. Myosin light chain phosphorylation does not increase during yeast phagocytosis by macrophages. J. Biol. Chem. 268, 16883–16886 (1993).

    CAS  PubMed  Google Scholar 

  30. Tuxworth, R. I. & Titus, M. A. Unconventional myosins: anchors in the membrane traffic relay. Traffic 1, 11–18 (2000).

    Article  CAS  Google Scholar 

  31. Bajno, L. et al. Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J. Cell Biol. 149, 697–706 (2000).

    Article  CAS  Google Scholar 

  32. Liu, X., Udovichenko, I. P., Brown, S. D., Steel, K. P. & Williams, D. S. Myosin VIIa participates in opsin transport through the photoreceptor cilium. J. Neurosci. 19, 6267–6274 (1999).

    Article  CAS  Google Scholar 

  33. Lapierre, L. A. et al. Myosin Vb is associated with plasma membrane recycling systems. Mol. Biol. Cell 12, 1843–1857 (2001).

    Article  CAS  Google Scholar 

  34. Cox, D., Lee, D. J., Dale, B. M., Calafat, J. & Greenberg, S. A Rab11-containing rapidly recycling compartment in macrophages that promotes phagocytosis. Proc. Natl Acad. Sci. USA 97, 680–685 (2000).

    Article  CAS  Google Scholar 

  35. Shepherd, P. R., Soos, M. A. & Siddle, K. Inhibitors of phosphoinositide 3-kinase block exocytosis but not endocytosis of transferrin receptors in 3T3-L1 adipocytes. Biochim. Biophys. Acta 211, 535–539 (1995).

    CAS  Google Scholar 

  36. Spiro, D. J., Boll, W., Kirchhausen, T. & Wessling-Resnick, M. Wortmannin alters the transferrin receptor endocytic pathway in vivo and in vitro. Mol. Biol. Cell 7, 355–367 (1996).

    Article  CAS  Google Scholar 

  37. Buczynski, G. et al. Inactivation of two Dictyostelium discoideum genes, DdPIK1 and DdPIK2, encoding proteins related to mammalian phosphatidylinositide 3-kinases, results in defects in endocytosis, lysosome to postlysosome transport, and actin cytoskeleton organization. J. Cell Biol. 136, 1271–1286 (1997).

    Article  CAS  Google Scholar 

  38. Zhou, K., Pandol, S., Bokoch, G. & Traynor-Kaplan, A. E. Disruption of Dictyostelium PI3K genes reduces [32P]phosphatidylinositol 3,4 bisphosphate and [32P]phosphatidylinositol trisphosphate levels, alters F-actin distribution and impairs pinocytosis. J. Cell Sci. 111, 283–294 (1998).

    CAS  PubMed  Google Scholar 

  39. Seastone, D. J., Lee, E., Bush, J., Knecht, D. & Cardelli, J. Overexpression of a novel rho family GTPase, RacC, induces unusual actin-based structures and positively affects phagocytosis in Dictyostelium discoideum. Mol. Biol. Cell 9, 2891–2904 (1998).

    Article  CAS  Google Scholar 

  40. Ishikawa, G., Azumi, K. & Yokosawa, H. Involvement of tyrosine kinase and phosphatidylinositol 3-kinase in phagocytosis by ascidian hemocytes. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 125, 351–357 (2000).

    Article  CAS  Google Scholar 

  41. Chishti, A. H. et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci. 23, 281–282 (1998).

    Article  CAS  Google Scholar 

  42. Hamada, K., Shimizu, T., Matsui, T., Tsukita, S. & Hakoshima, T. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J. 19, 4449–4462 (2000).

    Article  CAS  Google Scholar 

  43. Berg, S. & Cheney, R. E. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nature Cell Biol. 4, 246–250 (2002).

    Article  CAS  Google Scholar 

  44. Homma, K., Saito, J., Ikebe, R. & Ikebe, M. Motor Function and Regulation of Myosin X. J. Biol. Chem. 276, 34348–34354 (2001).

    Article  CAS  Google Scholar 

  45. Cox, D. et al. Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J. Exp. Med. 186, 1487–1494 (1997).

    Article  CAS  Google Scholar 

  46. Di Virgilio, F., Meyer, B. C., Greenberg, S. & Silverstein, S. C. Fc receptor-mediated phagocytosis occurs in macrophages at exceedingly low cytosolic Ca2+ levels. J. Cell Biol. 106, 657–666 (1988).

    Article  CAS  Google Scholar 

  47. El Khoury, J. et al. Macrophages adhere to glucose-modified basement membrane collagen IV via their scavenger receptors. J. Biol. Chem. 269, 10197–10200 (1994).

    CAS  PubMed  Google Scholar 

  48. Greenberg, S., Chang, P. & Silverstein, S. C. Tyrosine phosphorylation of the γ subunit of Fcγ receptors, p72syk, and paxillin during Fc receptor-mediated phagocytosis in macrophages. J. Biol. Chem. 269, 3897–3902 (1994).

    CAS  PubMed  Google Scholar 

  49. McNeil, P. L. & Warder, E. Glass beads load macromolecules into living cells. J. Cell Sci. 88, 669–678 (1987).

    PubMed  Google Scholar 

  50. Smith, C. L. Cytoskeletal movements and substrate interactions during initiation of neurite outgrowth by sympathetic neurons in vitro. J. Neurosci. 14, 384–398 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants HL54164 to S.G., K01 AR02158 to D.C. and DC03299 to R.E.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Greenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures

Figure 1. Expression of Myo10 tail does not inhibit transferrin receptor recruitment to phagocytic cups. (PDF 332 kb)

Figure 2. Expression of Myo10 tail does not inhibit macropinocytosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, D., Berg, J., Cammer, M. et al. Myosin X is a downstream effector of PI(3)K during phagocytosis. Nat Cell Biol 4, 469–477 (2002). https://doi.org/10.1038/ncb805

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb805

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing