Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantal release of free radicals during exocytosis of phagosomes

Abstract

Secretion of lysosomes and related organelles is important for immune system function. High-resolution membrane capacitance techniques were used to track changes in membrane area in single phagocytes during opsonized polystyrene bead uptake and release. Secretagogue stimulation of cells preloaded with beads resulted in immediate vesicle discharge, visualized as step increases in capacitance. The size of the increases were consistent with phagosome size. This hypothesis was confirmed by direct observation of dye release from bead-containing phagosomes after secretagogue stimulation. Capacitance recordings of exocytosis were correlated with quantal free radical release, as determined by amperometry. Thus, phagosomes undergo regulated secretion in macrophages, one function of which may be to deliver sequestered free radicals to the extracellular space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ultrastructural and electrophysiological analysis of hydrophobic polystyrene bead uptake in J774 macrophages.
Figure 2: Comparison of the time course and amplitude of GTP-γS stimulated secretory response in resting and polystyrene bead-loaded cells.
Figure 3: Comparative ultrastructure of cells loaded with latex beads and cells which have been stimulated to release beads after loading.
Figure 4: Quinacrine staining of J774.1 cells.
Figure 5: Macrophages exocytose phagosomes containing beads after stimulation with human HAIGG.
Figure 6: Simultaneous recording of membrane capacitance changes and superoxide-generated amperometric current in a J774 macrophage.
Figure 7: Correlation between superoxide release and capacitance increase in GTP-γS stimulated J774 macrophages preloaded with beads.

Similar content being viewed by others

References

  1. Huber, L. A., Madison, D. L., Simons, K. & Pfeiffer, S. E. Myelin membrane biogenesis by oligodendrocytes: Developmental regulation of low molecular weight GTP-binding proteins. FEBS Lett. 347, 273–278 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Tapper, H. The secretion of preformed granules by macrophages and neutrophils. J. Leukocyte Biol. 59, 613–622 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Tjelle, T., Saigal, B. & Berg, M. F. Degradation of phagosomal components in late endocytic organelles. J. Cell Sci. 111, 141–148 (1998).

    CAS  PubMed  Google Scholar 

  4. Desjardins, M., Nzala, N., Corsini, R. & Rondeau, C. Maturation of phagosomes is accompanied by changes in their fusion properties and size-selective acquisition of solute materials from endosomes. J. Cell Sci. 110, 2303–2314 (1997).

    CAS  PubMed  Google Scholar 

  5. Hampton, M. B., Kettle, A. J. & Winterbourn, C. C. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92, 3007–3017 (1998).

    CAS  PubMed  Google Scholar 

  6. Andrews, N. W. Regulated secretion of conventional lysosomes. Trends Cell Biol. 10, 316–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez, A., Webster, P., Ortego, J. & Andrews, N. W. Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J. Cell Biol. 137, 93–104 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reddy, A., Caler, E. V. & Andrews, N. W. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106, 157–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Ninomiya, Y., Kishimoto, T., Miyashita, Y. & Kasai, H. Ca2+-dependent exocytotic pathways in Chinese hamster ovary fibroblasts revealed by a caged-Ca2+ compound. J. Biol. Chem. 271, 17751–17754 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Martinez, I. et al. Synaptotagmin VII regulates Ca(2+)-dependent exocytosis of lysosomes in fibroblasts. J. Cell Biol. 148, 1141–1149 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Silverstein, R. L. & Febbraio, M. Identification of lysosome-associated membrane protein-2 as an activation-dependent platelet surface glycoprotein. Blood 80, 1470–1475 (1992).

    CAS  PubMed  Google Scholar 

  12. Hirano, T. et al. Apical secretion of lysosomal enzymes in rabbit pancreas occurs via a secretagogue regulated pathway and is increased after pancreatic duct obstruction. J. Clin. Invest. 87, 865–869 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Diakonova, M. et al. Localization of fine annexins in J774 macrophages and on isolated phagosomes. J. Cell Sci. 110, 1199–1213 (1997).

    CAS  PubMed  Google Scholar 

  14. Hackam, D. et al. v-SNARE-dependent secretion is required for phagocytosis. Proc. Natl Acad. Sci. USA 95, 11691–11696 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Holevinsky, K. O. & Nelson, D. J. Membrane capacitance changes associated with particle uptake during phagocytosis in macrophages. Biophys. J. 75, 2577–2586 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Di, A., Krupa, B. & Nelson, D. J. Calcium-G protein interactions in the regulation of macrophage secretion. J. Biol. Chem. 276, 37124–37132 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Campos-Toimil, M., Edwardson, J. M. & Thomas, P. Real-time studies of zymogen granule exocytosis in intact rat pancreatic acinar cells. J. Physiol. 528 Pt 2, 317–326 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Suzaki, E., Kobayashi, H., Kodama, Y., Masujima, T. & Terakawa, S. Video-rate dynamics of exocytotic events associated with phagocytosis in neutrophils. Cell Motil. Cytoskeleton 38, 215–228 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Breckenridge, L. J. & Almers, W. Final steps in exocytosis observed in a cell with giant secretory granules. Proc. Natl Acad. Sci. USA 84, 1945–1949 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Privat, C. et al. Superoxide release from interleukin-1B-stimulated human vascular cells: in situ electrochemical measurement. Free Rad. Biol. Med. 27, 554–559 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Hackam, D. J. et al. Characterization and subcellular localization of target membrane soluble NSF attachment protein receptors (t-SNAREs) in macrophages. J. Immunol. 156, 4377–4383 (1996).

    CAS  PubMed  Google Scholar 

  22. Martin, F., Salinas, E., Vazquez, J., Soria, B. & Reig, J. A. Inhibition of insulin release by synthetic peptides shows that the H3 region at the C-terminal domain of syntaxin-1 is crucial for Ca(2+)- but not for guanosine 5′-[gamma-thio]triphosphate-induced secretion. Biochem. J. 320 (Pt 1), 201–205 (1996).

    Article  Google Scholar 

  23. Chen, D., Bernstein, A. M., Lemons, P. P. & Whiteheart, S. W. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 in dense core granule release. Blood 95, 921–929 (2000).

    CAS  PubMed  Google Scholar 

  24. Fujiwara, T., Yamamori, T. & Akagawa, K. Suppression of transmitter release by Tat HPC-1/syntaxin 1A fusion protein. Biochim. Biophys. Acta 1539, 225–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. DeLeo, F. R. & Quinn, M. T. Assembly of the phagocyte NADPH oxidase: molecular interaction of oxidase proteins. J. Leuk. Biol. 60, 677–691 (1996).

    Article  Google Scholar 

  26. DeLeo, F. R., Allen, L. A., Apicella, M. & Nauseef, W. M. NADPH oxidase activation and assembly during phagocytosis. J. Immunol. 163, 6732–6740 (1999).

    CAS  PubMed  Google Scholar 

  27. Halliwell, B. & Gutteridge, J. M. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246, 501–514 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Delon, J. & Germain, R. N. Information transfer at the immunological synapse. Curr. Biol. 10, R923–R933 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Delon, J. The immunological synapse. Curr. Biol. 10, R214 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Stinchcombe, J. C., Bossi, G., S., B. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Bajjalieh, S. SNAREs take the stage: a prime time to trigger neurotransmitter secretion. Trends Neurosci. 24, 678–680 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Bajno, L. et al. Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J. Cell Biol. 149, 697–705 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neher, E. The influence of intracellular calcium concentration on degranulation of dialysed mast cells from rat peritoneum. J. Physiol. (Lond.) 395, 193–214 (1988).

    Article  CAS  Google Scholar 

  34. Alverez de Toledo, G. & Fernandez, J. M. Compound versus multigranular exocytosis in peritoneal mast cells. J. Gen. Physiol. 95, 397–409 (1990).

    Article  Google Scholar 

  35. Hansen, N., Antonin, W. & Edwardson, J. Identification of SNAREs involved in regulated exocytosis in the pancreatic acinar cell. J. Biol. Chem. 274, 22871–22876 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Creutz, C. E. The annexins and exocytosis. Science 258, 924–931 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Nelson, D. J., Jacobs, E. R., Tang, J. M., Zeller, J. M. & Bone R.C. Immunoglobulin G-induced single ionic channels in human alveolar marcrophage membranes. J. Clin. Invest. 76, 500–507 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Naren, A. P., Quick, M., W., Collawn, J. F., Nelson D. J. & Kirk, K. L. Syntaxin 1A inhibits CFTR chloride channels by means of domain-specific protein–protein interactions. Proc. Natl Acad. Sci. USA 95, 10972–10977 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hamill, O. P., Marty, A., Neher, E. & Sakmann, B. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch. Eur. J. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  40. Gillis, K. Admittance-based measurement of membrane capacitance using the EPC-9 patch-clamp amplifier. Pflugers Arch. Eur. J. Physiol. 439, 655–664 (2000).

    Article  CAS  Google Scholar 

  41. Segura, F., Brioso, M. A., Gomez, J. F., Machado, J. D., & Borges, R. Automatic analysis for amperometrical recordings of exocytosis. J. Neurosci. Methods 103, 151–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell 100, 209–219 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Marklund, S. Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for suuperoxide dismutase. J. Biol. Chem. 251, 7504–7507 (1976).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH/NIGMS R01 GM36823 to DJN, and the University of Chicago DDRCC (DK42086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah J. Nelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Movie 1

J774.1 macrophage cell loaded with polystyrene beads and quinacrine. All quinacrine-loaded vesicles were typically discharged within 20 sec of HAIGG addition. Numbers adjacent to the vesicles mark denote sequence of quinacrine-stained vesicle release. (AVI 1628 kb)

Movie 2

The surface plane of a J774.1 macrophage cell pre-loaded with polystyrene beads shown following HAIGG application. Beads are observed to rise to the surface over a time course of 128 sec. Arrows mark appearance of beads with time at the cell surface.view). (AVI 1935 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di, A., Krupa, B., Bindokas, V. et al. Quantal release of free radicals during exocytosis of phagosomes. Nat Cell Biol 4, 279–285 (2002). https://doi.org/10.1038/ncb771

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing