Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Human–animal cytoplasmic hybrid embryos, mitochondria, and an energetic debate

Scientists are seeking permission to generate human embryonic stem cells to study disease by introducing human genetic material into an animal oocyte. This has raised ethical questions that centre on whether the entities being generated are actually human. The answer to these questions will determine how this area of research will be regulated and whether such work will be legal. The function of the extra-nuclear mitochondrial genome lies at the heart of these issues and forms the focus of this commentary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The generation of embryonic stem cells through in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI) and somatic cell nuclear transfer (SCNT).

References

  1. http://www.hfea.gov.uk/cps/rde/xchg/SID-3F57D79B-4B5A19B0/hfea/hs.xsl/273.html

  2. Department of Health Command Paper, Cm 698 (2006).

  3. Editorial. Nature 447, 353–354 (2007).

  4. Chen Y. et al. Cell Res. 13, 251–263 (2003).

    Article  Google Scholar 

  5. http://www.hfea.gov.uk/cps/rde/xchg/SID-3F57D79B-A728C441/hfea/hs.xsl/374.html

  6. Holden, C. Science 310, 1402–1403 (2005).

    Article  CAS  Google Scholar 

  7. Spolsky, C. M. & Eisenstadt, J. M. FEBS Lett. 25, 319–324 (1972).

    Article  CAS  Google Scholar 

  8. Thomson, J. A. et al. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  9. Barratt, C. L. R., St. John, J. C. & Afnan, M. Lancet 364, 115–118 (2004).

    Article  Google Scholar 

  10. Klimanskaya, I. et al. Nature 444, 481–485 (2006).

    Article  CAS  Google Scholar 

  11. Rideout, W. M., 3rd, Hochedlinger, K., Kyba, M., Daley, G. Q. & Jaenisch, R. Cell 109, 17–27 (2002).

    Article  CAS  Google Scholar 

  12. Stojkovic, M. et al. Reprod. Biomed. Online 11, 226–231 (2005).

    Article  Google Scholar 

  13. Okita, K., Ichisaka, T. & Yamanaka, S. Nature 448, 313–317 (2007).

    Article  CAS  Google Scholar 

  14. Wernig, M. et al. Nature 448, 318–324 (2007).

    Article  CAS  Google Scholar 

  15. Maherali, N. et al. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  Google Scholar 

  16. Chang K. H. et al. Fertil. Steril. 80, 1380–1387 (2003).

    Article  Google Scholar 

  17. Yang, C. X. et al. Mol. Reprod. Dev. 65, 396–401 (2003).

    Article  CAS  Google Scholar 

  18. Sutovsky, P. et al. Biol. Reprod. 63, 582–590 (2000).

    Article  CAS  Google Scholar 

  19. St John, J. C., Lloyd, R. E., Bowles, E. J., Thomas, E. C. & El Shourbagy, S. Reprod. 127, 631–641 (2004).

    Article  CAS  Google Scholar 

  20. Hauswirth, W. W. & Laipis, P. J. Proc. Natl Acad. Sci. USA 79, 4686–4690 (1982).

    Article  CAS  Google Scholar 

  21. Shoubridge, E. A. & Wai, T. Curr. Top. Dev. Biol. 77, 87–111 (2007).

    Article  CAS  Google Scholar 

  22. http://www.mitomap.org/euk_mitos.html

  23. McKenzie, M., Chiotis, M., Pinkert, C. A. & Trounce, I. A. Mol. Biol. Evol. 20, 1117–1124 (2003).

    Article  CAS  Google Scholar 

  24. Sato, A. et al. Proc. Natl Acad. Sci. USA 102, 16765–16770 (2006).

    Article  Google Scholar 

  25. Wallace, D. C. Science 283, 1482–1488 (1999).

    Article  CAS  Google Scholar 

  26. King, M. P. & Attardi, G. Meths Enzymol. 264, 304–313 (1996).

    Article  CAS  Google Scholar 

  27. Ivanov, P. L. et al. Nature Genet. 12, 417–420 (1996).

    Article  CAS  Google Scholar 

  28. Wilmut, I. et al. Science 310, 1903 (2005).

    Article  CAS  Google Scholar 

  29. Bolton, V. N., Oades, P. J. & Johnson, M. H. J. Embryol. Exp. Morphol. 79, 139–163 (1984).

    CAS  Google Scholar 

  30. Ma, J., Svoboda, P., Schultz, R. M. & Stein, P. Biol. Reprod. 64, 1713–1721 (2001).

    Article  CAS  Google Scholar 

  31. Braude, P., Bolton, V. & Moore, S. Nature 332, 459–461 (1988).

    Article  CAS  Google Scholar 

  32. Camous, S., Kopecny, V. & Flechon, J. E. Biol. Cell 58, 195–200 (1986)

    Article  CAS  Google Scholar 

  33. Pacheco-Trigon, S. et al. Biol. Reprod. 67, 1907–1918 (2002).

    Article  CAS  Google Scholar 

  34. Avilion, A. A. et al. Genes Dev. 17, 126–140 (2003).

    Article  CAS  Google Scholar 

  35. Bowles E. J. et al. Genetics 13, 1511–1126 (2007).

    Article  Google Scholar 

  36. Egli, D., Rosains, J., Birkoff, G. & Eggan, K. Nature 447, 679–685 (2007).

    Article  CAS  Google Scholar 

  37. Anderson, S. et al. Nature 290, 457–465 (1981).

    Article  CAS  Google Scholar 

  38. Stocco, D. M. Ann. Rev. Physiol. 63, 193–213 (2001).

    Article  CAS  Google Scholar 

  39. Kroemer, G. Biochem. Biophys. Res. Com. 304, 433–435 (2003).

    Article  CAS  Google Scholar 

  40. Moyes, C. D., Battersby, B. J. & Leary, S. C. J. Exp. Biol. 201, 299–307 (1998).

    CAS  Google Scholar 

  41. Piko, L. & Taylor, K. D. Dev. Biol. 123, 364–374 (1987).

    Article  CAS  Google Scholar 

  42. Poulton, J. et al. Hum. Mol. Genet. 3, 1763–1769 (1994).

    Article  CAS  Google Scholar 

  43. Yakes, F. M. & Van Houten, B. Proc. Natl Acad. Sci. USA 94, 514–519 (1997).

    Article  CAS  Google Scholar 

  44. Linnane, A. W., Marzuki, S., Ozawa, T. & Tanaka, M. Lancet 1, 642–645 (1989).

    Article  CAS  Google Scholar 

  45. Blok, R. B., Gook, D. A., Thorburn, D. R. & Dahl, H. H. Am. J. Hum. Genet. 60, 1495–1501 (1997).

    Article  CAS  Google Scholar 

  46. Allen, J. F. J. Theor. Biol. 180, 135-140 (1996).

  47. Van Blerkom, J., Davis, P. & Alexander, S. Hum. Reprod. 15, 2621–2633 (2000).

    Article  CAS  Google Scholar 

  48. Spikings, E. C., Alderson, J. & St. John, J. C. Biol. Reprod. 76, 327–335 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, J., Lovell-Badge, R. Human–animal cytoplasmic hybrid embryos, mitochondria, and an energetic debate. Nat Cell Biol 9, 988–992 (2007). https://doi.org/10.1038/ncb436

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb436

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing