Article

Lifelong haematopoiesis is established by hundreds of precursors throughout mammalian ontogeny

Received:
Accepted:
Published online:

Abstract

Current dogma asserts that mammalian lifelong blood production is established by a small number of blood progenitors. However, this model is based on assays that require the disruption, transplantation and/or culture of embryonic tissues. Here, we used the sample-to-sample variance of a multicoloured lineage trace reporter to assess the frequency of emerging lifelong blood progenitors while avoiding the disruption, culture or transplantation of embryos. We find that approximately 719 Flk1+ mesodermal precursors, 633 VE-cadherin+ endothelial precursors and 545 Vav1+ nascent blood stem and progenitor cells emerge to establish the haematopoietic system at embryonic days (E)7–E8.5, E8.5–E11.5 and E11.5–E14.5, respectively. We also determined that the spatio-temporal recruitment of endothelial blood precursors begins at E8.5 and ends by E10.5, and that many c-Kit+ clusters of newly specified blood progenitors in the aorta are polyclonal in origin. Our work illuminates the dynamics of the developing mammalian blood system during homeostasis.

  • Subscribe to Nature Cell Biology for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    , & Embryonic origin of the adult hematopoietic system: advances and questions. Development 138, 1017–1031 (2011).

  2. 2.

    et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129, 4891–4899 (2002).

  3. 3.

    & Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897–906 (1996).

  4. 4.

    , , , & Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1, 291–301 (1994).

  5. 5.

    , , & Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19, 2465–2474 (2000).

  6. 6.

    , , & The placenta is a niche for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005).

  7. 7.

    , , , & Mouse extraembryonic arterial vessels harbor precursors capable of maturing into definitive HSCs. Blood 122, 2338–2345 (2013).

  8. 8.

    , , & Placenta as a site for hematopoietic stem cell development. Exp. Hematol. 33, 1048–1054 (2005).

  9. 9.

    & The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev. Cell 8, 377–387 (2005).

  10. 10.

    et al. Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 5, 385–395 (2009).

  11. 11.

    & Engraftment of embryonic hematopoietic cells in conditioned newborn recipients. Blood 89, 2176–2183 (1997).

  12. 12.

    et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111 (2010).

  13. 13.

    et al. Clonal fate mapping quantifies the number of haematopoietic stem cells that arise during development. Nat. Cell Biol. 19, 17–27 (2017).

  14. 14.

    & Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112–115 (2010).

  15. 15.

    , , & Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver. Development 143, 1284–1289 (2016).

  16. 16.

    et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).

  17. 17.

    et al. The bulk of the hematopoietic stem cell population is dispensable for murine steady-state and stress hematopoiesis. Blood 128, 2285–2296 (2016).

  18. 18.

    et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

  19. 19.

    et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

  20. 20.

    , & Number and continuous proliferative pattern of transplanted primitive immunohematopoietic stem cells. Proc. Natl Acad. Sci. USA 85, 822–826 (1988).

  21. 21.

    , , & In vivo kinetics of murine hemopoietic stem cells. Blood 96, 3399–3405 (2000).

  22. 22.

    , & Development and aging of primitive hematopoietic stem cells in BALB/cBy mice. Exp. Hematol. 27, 928–935 (1999).

  23. 23.

    , & Numbers and functions of transplantable primitive immunohematopoietic stem cells. Effects of age. J. Immunol. 142, 3833–3840 (1989).

  24. 24.

    , & Distinct developmental patterns of short-term and long-term functioning lymphoid and myeloid precursors defined by competitive limiting dilution analysis in vivo. J. Immunol. 157, 138–145 (1996).

  25. 25.

    , , & In situ identification of bipotent stem cells in the mammary gland. Nature 506, 322–327 (2014).

  26. 26.

    , , , & Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887–891 (2009).

  27. 27.

    , , , & Hematopoietic stem cells with high proliferative potential. Assay of their concentration in marrow by the frequency and duration of cure of W/Wv mice. J. Clin. Invest. 70, 242–253 (1982).

  28. 28.

    , & A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111, 5553–5561 (2008).

  29. 29.

    , , , & Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc. Natl Acad. Sci. USA 87, 8736–8740 (1990).

  30. 30.

    , , , & SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

  31. 31.

    et al. The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 107, 2311–2316 (2006).

  32. 32.

    , , & Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

  33. 33.

    , & Cycle initiation and colony formation in culture by murine marrow cells with long-term reconstituting potential in vivo. Blood 88, 4149–4158 (1996).

  34. 34.

    & Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev. 4, 220–232 (1990).

  35. 35.

    & Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell 1, 263–270 (2007).

  36. 36.

    et al. Identification of Lin(-)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105, 2717–2723 (2005).

  37. 37.

    et al. Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin + CD45 + pre-definitive HSCs. Cell Stem Cell 3, 99–108 (2008).

  38. 38.

    et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl Acad. Sci. USA 93, 5860–5865 (1996).

  39. 39.

    , , & Evidence for novel fate of Flk1 + progenitor: contribution to muscle lineage. Genesis 35, 153–159 (2003).

  40. 40.

    & Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing. Development 132, 203–213 (2005).

  41. 41.

    et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1, 113–126 (2007).

  42. 42.

    et al. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J. Clin. Invest. 116, 2808–2816 (2006).

  43. 43.

    et al. Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells. J. Cell Biol. 122, 897–902 (1993).

  44. 44.

    , , & The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl Acad. Sci. USA 92, 10302–10306 (1995).

  45. 45.

    et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

  46. 46.

    et al. Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells. Cell 167, 1310–1322 (2016).

  47. 47.

    & Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos. Development 137, 3651–3661 (2010).

  48. 48.

    et al. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7, 335–344 (1997).

  49. 49.

    , & In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. Proc. Natl Acad. Sci. USA 94, 6776–6780 (1997).

  50. 50.

    , , , & Definitive hematopoietic commitment within the embryonic vascular endothelial-cadherin(+) population. Exp. Hematol. 30, 1070–1078 (2002).

  51. 51.

    et al. Effect of developmental stage of HSC and recipient on transplant outcomes. Dev. Cell 29, 621–628 (2014).

  52. 52.

    & Pdgf signalling guides neural crest contribution to the haematopoietic stem cell specification niche. Nat. Cell Biol. 19, 457–467 (2017).

  53. 53.

    et al. Progressive maturation toward hematopoietic stem cells in the mouse embryo aorta. Blood 125, 465–469 (2015).

Download references

Acknowledgements

We thank W. Clements, P. Holmfeldt, F. Camargo, S. Patel, L. Grimes, B. Hadland, I. Bernstein and the McKinney-Freeman laboratory and Department of Hematology at St Jude Children’s Research Hospital (St Jude) for critical discussions and reading of the manuscript; D. Ashmun, S. Schwemberger and J. Laxton for FACS support; C. Davis-Goodrum, Krista Millican and C. Savage for help with injections and timed pregnancies; V. Frohlich and J. Peters for help with confocal imaging; Cdh5+/ERT2-Cre mice were a gift from the laboratory of R. Adams (Max Planck Institute for Molecular Biomedicine, Germany) by way of A. Zovein (UCSF, California, USA). Vav1-Cre+/T mice were a gift from the laboratory of T. Graf (Center for Genomic Regulation, Spain) by way of N. Speck (University of Pennsylvania, Pennsylvania, USA). VE-cadherin-Cre+/T mice were a gift from the laboratory of G. Oliver (Northwestern University, Illinois, USA). This work was supported by the American Society of Hematology (S.M.-F.), the Hartwell Foundation (S.M.-F.), the NIDDK (K01DK080846 and R01DK104028, S.M.-F.), the American Lebanese Syrian Associated Charities (ALSAC) (S.M.-F. and St Jude Cell & Tissue Imaging Center), and the NCI (P30 CA021765-35, SJCRH Cell & Tissue Imaging Center). The St Jude Cancer Center Core Cytogenetics laboratory is supported by the National Cancer Institute at the National Institute of Health (P30 CA21765) and ALSAC.

Author information

Affiliations

  1. Department of Hematology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA

    • Miguel Ganuza
    • , Trent Hall
    • , Ashley Chabot
    •  & Shannon McKinney-Freeman
  2. Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA

    • David Finkelstein
  3. Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA

    • Guolian Kang

Authors

  1. Search for Miguel Ganuza in:

  2. Search for Trent Hall in:

  3. Search for David Finkelstein in:

  4. Search for Ashley Chabot in:

  5. Search for Guolian Kang in:

  6. Search for Shannon McKinney-Freeman in:

Contributions

M.G. designed the study, analysed Confetti mice, generated and performed iCC experiments, analysed intra-aortic clusters, performed and analysed transplants, collected and analysed data, and wrote the paper. T.H. performed and analysed transplants, contributed to study design, and analysed data. D.F. performed computer simulations to derive the formula for estimating cell numbers, analysed data, contributed to study design, and wrote relevant sections of the paper. A.C. analysed Confetti+ blood and resulting data, G.K. performed statistical analyses, S.M.-F. designed the study, analysed data and wrote the paper. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Shannon McKinney-Freeman.

Integrated supplementary information

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

  2. 2.

    Life Sciences Reporting Summary