Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

New MAPS for misfolded proteins

Clearing misfolded proteins from the cytoplasm is essential to maintain cellular homeostasis. Now, a parallel clearance system is described that uses the deubiquitylase USP19 to enable secretion of misfolded cytoplasmic proteins when conventional proteasomal degradation is compromised. Misfolding-associated protein secretion (MAPS) has important implications for protein quality control and prion-like transmission.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clearance of misfolded cytoplasmic proteins via the MAPS pathway.

References

  1. Wolff, S., Weissman, J. S. & Dillin, A. Cell 157, 52–64 (2014).

    Article  CAS  Google Scholar 

  2. Oueslati, A., Ximerakis, M. & Vekrellis, K. Exp. Neurobiol. 23, 324–336 (2014).

    Article  Google Scholar 

  3. Saman, S. et al. J. Biol. Chem. 287, 3842–3849 (2012).

    Article  CAS  Google Scholar 

  4. Nickel, W. Curr. Opin. Biotechnol. 21, 621–626 (2010).

    Article  CAS  Google Scholar 

  5. Lee, J.-G., Takahama, S., Zhang, G., Tomarev, S. I. & Ye, Y. Nat. Cell Biol. 18, 765–776 (2016).

    Article  CAS  Google Scholar 

  6. Hassink, G. C. et al. EMBO Rep. 10, 755–761 (2009).

    Article  CAS  Google Scholar 

  7. Lee, J.-G., Kim, W., Gygi, S. & Ye, Y. J. Biol. Chem. 289, 3510–3517 (2014).

    Article  CAS  Google Scholar 

  8. Zhang, M. & Schekman, R. Science 340, 559–561 (2013).

    Article  CAS  Google Scholar 

  9. Soldati, T., Rancaño, C., Geissler, H. & Pfeffer, S. R. J. Biol. Chem. 270, 25541–25548 (1995).

    Article  CAS  Google Scholar 

  10. Advani, R. J. et al. J. Cell Biol. 146, 765–776 (1999).

    Article  CAS  Google Scholar 

  11. Antonin, W., Holroyd, C., Tikkanen, R., Höning, S. & Jahn, R. Mol. Biol. Cell 11, 3289–3298 (2000).

    Article  CAS  Google Scholar 

  12. Ciechanover, A. & Kwon, Y. T. Exp. Mol. Med. 47, e147 (2015).

    Article  CAS  Google Scholar 

  13. Lee, H.-J., Bae, E.-J. & Lee, S.-J. Nat. Rev. Neurol. 10, 92–98 (2014).

    Article  CAS  Google Scholar 

  14. Moreau, P. et al. Blood 120, 947–959 (2012).

    Article  CAS  Google Scholar 

  15. Korolchuk, V. I., Menzies, F. M. & Rubensztein, D. C. FEBS Lett. 584, 1393–1398 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.V. and E.F. contributed equally to this work.

Corresponding author

Correspondence to John C. Christianson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkmar, N., Fenech, E. & Christianson, J. New MAPS for misfolded proteins. Nat Cell Biol 18, 724–726 (2016). https://doi.org/10.1038/ncb3381

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing