Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tipping the metabolic scales towards increased longevity in mammals

Abstract

A hallmark of ageing is dysfunction in nutrient signalling pathways that regulate glucose homeostasis, negatively affecting whole-body energy metabolism and ultimately increasing the organism's susceptibility to disease. Maintenance of insulin sensitivity depends on functional mitochondrial networks, but is compromised by alterations in mitochondrial energy metabolism during ageing. Here we discuss metabolic paradigms that influence mammalian longevity, and highlight recent advances in identifying fundamental signalling pathways that influence metabolic health and ageing through mitochondrial perturbations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolic flexibility controls healthspan and lifespan.
Figure 2: Effect of ageing on mitochondrial function.

Similar content being viewed by others

References

  1. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. De Cabo, R., Carmona-Gutierrez, D., Bernier, M., Hall, M. N. & Madeo, F. The search for antiaging interventions: from elixirs to fasting regimens. Cell 157, 1515–1526 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Selman, C. & Withers, D. J. Mammalian models of extended healthy lifespan. Philos. Trans. R. Soc. Lond. Ser. B. Biol. Sci. 366, 99–107 (2011).

    Google Scholar 

  4. Rowe, J. W., Minaker, K. L., Pallotta, J. A. & Flier, J. S. Characterization of the insulin resistance of aging. J. Clin. Invest. 71, 1581–1587 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fink, R. I., Kolterman, O. G., Griffin, J. & Olefsky, J. M. Mechanisms of insulin resistance in aging. J. Clin. Invest. 71, 1523–1535 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Houtkooper, R. H. et al. The metabolic footprint of aging in mice. Sci. Rep. 1, 134 (2011).

    PubMed  PubMed Central  Google Scholar 

  7. Riera, C. E. et al. TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling. Cell 157, 1023–1036 (2014).

    CAS  PubMed  Google Scholar 

  8. Kurosu, H. et al. Suppression of aging in mice by the hormone klotho. Science 309, 1829–1833 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Selman, C. et al. Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J. 22, 807–818 (2008).

    CAS  PubMed  Google Scholar 

  10. Taguchi, A., Wartschow, L. M. & White, M. F. Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317, 369–372 (2007).

    CAS  PubMed  Google Scholar 

  11. Speakman, J. R. et al. Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 3, 87–95 (2004).

    CAS  PubMed  Google Scholar 

  12. Galgani, J. E., Moro, C. & Ravussin, E. Metabolic flexibility and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 295, 1009–1017 (2008).

    Google Scholar 

  13. Kondratov, R. V., Kondratova, A. A., Gorbacheva, V. Y., Vykhovanets, O. V. & Antoch, M. P. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 20, 1868–1873 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang, H-C. & Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448–1460 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sahar, S. & Sassone-Corsi, P. Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9, 886–896 (2009).

    CAS  PubMed  Google Scholar 

  16. Fontana, L., Partridge, L. & Longo, V. D. Dietary restriction, growth factors and aging: from yeast to humans. Science 328, 321–326 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mair, W. & Dillin, A. Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727–754 (2008).

    CAS  PubMed  Google Scholar 

  18. Bruss, M. D., Khambatta, C. F., Ruby, M. A., Aggarwal, I. & Hellerstein, M. K. Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am. J. Physiol. Endocrinol. Metab. 298, E108–E116 (2010).

    CAS  PubMed  Google Scholar 

  19. Bluher, M. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574 (2003).

    PubMed  Google Scholar 

  20. Foukas, L. C. et al. Long-term p110? PI3K inactivation exerts a beneficial effect on metabolism. EMBO Mol. Med. 5, 563–571 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Y. et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 1, e00065 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. Yuan, R. et al. Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell 8, 277–287 (2009).

    CAS  PubMed  Google Scholar 

  23. Berryman, D. E., Christiansen, J. S., Johannsson, G., Thorner, M. O. & Kopchick, J. J. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm. IGF Res. 18, 455–471 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hsieh, C-C., DeFord, J. H., Flurkey, K., Harrison, D. E. & Papaconstantinou, J. Implications for the insulin signaling pathway in Snell dwarf mouse longevity: a similarity with the C. elegans longevity paradigm. Mech. Ageing Dev. 123, 1229–1244 (2002).

    CAS  PubMed  Google Scholar 

  25. Dominici, F. P., Hauck, S., Argentino, D. P., Bartke, A. & Turyn, D. Increased insulin sensitivity and upregulation of insulin receptor, insulin receptor substrate (IRS)-1 and IRS-2 in liver of Ames dwarf mice. J. Endocrinol. 173, 81–94 (2002).

    CAS  PubMed  Google Scholar 

  26. Shah, J. H. & Cerchio, G. M. Hypoinsulinemia of hypothyroidism. Arch. Intern. Med. 132, 657–661 (1973).

    CAS  PubMed  Google Scholar 

  27. Tsugane, S. & Inoue, M. Insulin resistance and cancer: epidemiological evidence. Cancer Sci. 101, 1073–1079 (2010).

    CAS  PubMed  Google Scholar 

  28. Naderali, E. K., Ratcliffe, S. H. & Dale, M. C. Obesity and Alzheimer's disease: a link between body weight and cognitive function in old age. Am. J. Alzheimers Dis. Other Demen. 24, 445–449 (2009).

    PubMed  Google Scholar 

  29. Ortega-Molina, A. et al. Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab. 15, 382–394 (2012).

    CAS  PubMed  Google Scholar 

  30. Coschigano, K. T., Clemmons, D., Bellush, L. L. & Kopchick, J. J. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141, 2608–2613 (2000).

    CAS  PubMed  Google Scholar 

  31. Ikeno, Y., Bronson, R. T., Hubbard, G. B., Lee, S. & Bartke, A. Delayed occurrence of fatal neoplastic diseases in ames dwarf mice: correlation to extended longevity. J. Gerontol. A. Biol. Sci. Med. Sci. 58, 291–296 (2003).

    PubMed  Google Scholar 

  32. Ikeno, Y. et al. Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J. Gerontol. A. Biol. Sci. Med. Sci. 64, 522–529 (2009).

    PubMed  Google Scholar 

  33. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller, R. A. et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A. Biol. Sci. Med. Sci. 66A, 191–201 (2011).

    CAS  Google Scholar 

  35. Corradetti, M. N. & Guan, K-L. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene 25, 6347–6360 (2006).

    CAS  PubMed  Google Scholar 

  36. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Roy, J., Paquette, J-S., Fortin, J.-F. & Tremblay, M. J. The immunosuppressant rapamycin represses human immunodeficiency virus type 1 replication. Antimicrob. Agents Chemother. 46, 3447–3455 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fang, Y. et al. Duration of rapamycin treatment has differential effects on metabolism in mice. Cell Metab. 17, 456–462 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pyo, J-O. et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4, 2300 (2013).

    PubMed  Google Scholar 

  40. Selman, C. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140–144 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, J. J. et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep. 4, 913–920 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Saltiel, A. R. & Kahn, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001).

    CAS  PubMed  Google Scholar 

  43. Bratic, A. & Larsson, N-G. The role of mitochondria in aging. J. Clin. Invest. 123, 951–957 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Schapira, A. H. V. Mitochondrial diseases. Lancet 379, 1825–1834 (2012).

    CAS  PubMed  Google Scholar 

  45. Herbener, G. H. A morphometric study of age-dependent changes in mitochondrial population of mouse liver and heart. J. Gerontol. 31, 8–12 (1976).

    CAS  PubMed  Google Scholar 

  46. Lanza, I. R. & Nair, K. S. Mitochondrial function as a determinant of life span. Pflüg. Arch. Eur. J. Physiol. 459, 277–289 (2010).

    CAS  Google Scholar 

  47. Conley, K. E., Jubrias, S. A. & Esselman, P. C. Oxidative capacity and ageing in human muscle. J. Physiol. 526, 203–210 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).

    CAS  PubMed  Google Scholar 

  49. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    CAS  PubMed  Google Scholar 

  51. Patti, M. E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl Acad. Sci. USA 100, 8466–8471 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wenz, T., Rossi, S. G., Rotundo, R. L., Spiegelman, B. M. & Moraes, C. T. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proc. Natl Acad. Sci. USA 106, 20405–20410 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Anderson, R. & Prolla, T. PGC-1α in aging and anti-aging interventions. Biochim. Biophys. Acta 1790, 1059–1066 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Austin, S. & St-Pierre, J. PGC1α and mitochondrial metabolism — emerging concepts and relevance in ageing and neurodegenerative disorders. J. Cell Sci. 125, 4963–4971 (2012).

    CAS  PubMed  Google Scholar 

  55. Cantó, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    PubMed  PubMed Central  Google Scholar 

  56. Jäger, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007).

    PubMed  PubMed Central  Google Scholar 

  57. Narkar, V. A. et al. AMPK and PPARδ agonists are exercise mimetics. Cell 134, 405–415 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Viscomi, C. et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1α axis. Cell Metab. 14, 80–90 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    PubMed  Google Scholar 

  60. Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11, 390–401 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cantó, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213–219 (2010).

    PubMed  PubMed Central  Google Scholar 

  62. Price, N. L. et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675–690 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nicholls, D. G., Bernson, V. S. M. & Heaton, G. M. in Effectors of Thermogenesis (eds. Girardier, L. & Seydoux, J.) 89–93 (Birkhäuser Basel, 1978).

    Google Scholar 

  64. Echtay, K. S. et al. Superoxide activates mitochondrial uncoupling proteins. Nature 415, 96–99 (2002).

    CAS  PubMed  Google Scholar 

  65. Gates, A. C. et al. Respiratory uncoupling in skeletal muscle delays death and diminishes age-related disease. Cell Metab. 6, 497–505 (2007).

    CAS  PubMed  Google Scholar 

  66. Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314–317 (2005).

    CAS  PubMed  Google Scholar 

  67. Lanza, I. R. et al. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab. 16, 777–788 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. St-Pierre, J. et al. Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. J. Biol. Chem. 278, 26597–26603 (2003).

    CAS  PubMed  Google Scholar 

  69. Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).

    CAS  PubMed  Google Scholar 

  70. Pérez, V. I. et al. The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell 8, 73–75 (2009).

    PubMed  Google Scholar 

  71. Van Remmen, H. et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16, 29–37 (2003).

    CAS  PubMed  Google Scholar 

  72. Zhang, Y. et al. Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity. J. Gerontol. A. Biol. Sci. Med. Sci. 64, 1212–1220 (2009).

    PubMed  Google Scholar 

  73. Edgar, D. et al. Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice. Cell Metab. 10, 131–138 (2009).

    CAS  PubMed  Google Scholar 

  74. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    CAS  PubMed  Google Scholar 

  75. Vermulst, M. et al. DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat. Genet. 40, 392–394 (2008).

    CAS  PubMed  Google Scholar 

  76. Kolesar, J. E. et al. Defects in mitochondrial DNA replication and oxidative damage in muscle of mtDNA mutator mice. Free Radic. Biol. Med. 75, 241–251 (2014).

    CAS  PubMed  Google Scholar 

  77. Yee, C., Yang, W. & Hekimi, S. The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157, 897–909 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002).

    CAS  PubMed  Google Scholar 

  79. Lee, S. S. et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat. Genet. 33, 40–48 (2003).

    CAS  PubMed  Google Scholar 

  80. Durieux, J., Wolff, S. & Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79–91 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yoneda, T. et al. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J. Cell Sci. 117, 4055–4066 (2004).

    CAS  PubMed  Google Scholar 

  82. Mottis, A., Jovaisaite, V. & Auwerx, J. The mitochondrial unfolded protein response in mammalian physiology. Mamm. Genome 25, 424–433 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhao, Q. et al. A mitochondrial specific stress response in mammalian cells. EMBO J. 21, 4411–4419 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Houtkooper, R. H. et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497, 451–457 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dell'agnello, C. et al. Increased longevity and refractoriness to Ca2+-dependent neurodegeneration in Surf1 knockout mice. Hum. Mol. Genet. 16, 431–444 (2007).

    CAS  PubMed  Google Scholar 

  86. Lapointe, J. & Hekimi, S. Early mitochondrial dysfunction in long-lived Mclk1+/− mice. J. Biol. Chem. 283, 26217–26227 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bai, P. et al. PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab. 13, 450–460 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bai, P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006).

    CAS  PubMed  Google Scholar 

  90. Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944–2950 (2002).

    CAS  PubMed  Google Scholar 

  92. Fisher-Wellman, K. H. & Neufer, P. D. Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol. Metab. 23, 142–153 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lowell, B. B. & Shulman, G. I. Mitochondrial dysfunction and type 2 diabetes. Science 307, 384–387 (2005).

    CAS  PubMed  Google Scholar 

  94. Cholerton, B., Baker, L. D. & Craft, S. Insulin resistance and pathological brain ageing. Diabet. Med. 28, 1463–1475 (2011).

    CAS  PubMed  Google Scholar 

  95. Evans, J. L., Maddux, B. A. & Goldfine, I. D. The molecular basis for oxidative stress-induced insulin resistance. Antioxid. Redox Signal. 7, 1040–1052 (2005).

    CAS  PubMed  Google Scholar 

  96. Halliwell, B. Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623 (1992).

    CAS  PubMed  Google Scholar 

  97. Pipatpiboon, N., Pratchayasakul, W., Chattipakorn, N. & Chattipakorn, S. C. PPARγ agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. Endocrinology 153, 329–338 (2012).

    CAS  PubMed  Google Scholar 

  98. Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012).

    CAS  PubMed  Google Scholar 

  99. Kleinridders, A. et al. Leptin regulation of Hsp60 impacts hypothalamic insulin signaling. J. Clin. Invest. 123, 4667–4680 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chan, D. C. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46, 265–287 (2012).

    CAS  PubMed  Google Scholar 

  101. Gomes, L. C., Di Benedetto, G. & Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13, 589–598 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Green, D. R., Galluzzi, L. & Kroemer, G. Mitochondria and the autophagy- inflammation-cell death axis in organismal aging. Science 333, 1109–1112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, J. Autophagy and mitophagy in cellular damage control. Redox Biol. 1, 19–23 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee, S. et al. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 282, 22977–22983 (2007).

    CAS  PubMed  Google Scholar 

  105. Dietrich, M. O., Liu, Z-W. & Horvath, T. L. Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 155, 188–199 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Schneeberger, M. et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172–187 (2013).

    CAS  PubMed  Google Scholar 

  107. De Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    PubMed  Google Scholar 

  108. Sebastián, D. et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl Acad. Sci. USA 109, 5523–5528 (2012).

    PubMed  PubMed Central  Google Scholar 

  109. Muñoz, J. P. et al. Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 32, 2348–2361 (2013).

    PubMed  PubMed Central  Google Scholar 

  110. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    PubMed  Google Scholar 

  111. Garg, A. D. et al. ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol. Med. 18, 589–598 (2012).

    CAS  PubMed  Google Scholar 

  112. Zhang, K. & Kaufman, R. J. From endoplasmic-reticulum stress to the inflammatory response. Nature 454, 455–462 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, G. et al. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497, 211–216 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Cheng, Z. & Almeida, F. A. Mitochondrial alteration in type 2 diabetes and obesity: an epigenetic link. Cell Cycle 13, 890–897 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues for omitting numerous references due to space limitations. We thank Carsten Merkwirth and Kristen Berendzen for their helpful comments on the manuscript. C.E.R is supported by the American Diabetes Association Pathway to Stop Diabetes Grant 1-15-INI-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Dillin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riera, C., Dillin, A. Tipping the metabolic scales towards increased longevity in mammals. Nat Cell Biol 17, 196–203 (2015). https://doi.org/10.1038/ncb3107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing