Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autoregulatory mechanism for dynactin control of processive and diffusive dynein transport

Abstract

Dynactin is the longest known cytoplasmic dynein regulator, with roles in dynein recruitment to subcellular cargo and in stimulating processive dynein movement. The latter function was thought to involve the N-terminal microtubule-binding region of the major dynactin polypeptide p150Glued, although recent results disputed this. To understand how dynactin regulates dynein we generated recombinant fragments of the N-terminal half of p150Glued. We find that the dynein-binding coiled-coil α-helical domain CC1B is sufficient to stimulate dynein processivity, which it accomplishes by increasing average dynein step size and forward-step frequency, while decreasing lateral stepping and microtubule detachment. In contrast, the immediate upstream coiled-coil domain, CC1A, activates a surprising diffusive dynein state. CC1A interacts physically with CC1B and interferes with its effect on dynein processivity. We also identify a role for the N-terminal portion of p150Glued in coordinating these activities. Our results reveal an unexpected form of long-range allosteric control of dynein motor function by internal p150Glued sequences, and evidence for p150Glued autoregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of dynactin p150Glued fragments.
Figure 2: Effects of dynactin fragments on dynein-single-molecule processivity.
Figure 3: Effects of dynactin fragments on dynein single-molecule diffusivity.
Figure 4: Effects of dynactin fragments on dynein-single-molecule force production.
Figure 5: Effects of processivity-enhancing fragment CC1B on dynein stepping behaviour.
Figure 6: Interaction between coiled-coil p150Glued fragments CC1A and CC1B.

Similar content being viewed by others

References

  1. Vallee, R. B., McKenney, R. J. & Ori-McKenney, K. M. Multiple modes of cytoplasmic dynein regulation. Nat. Cell Biol. 14, 224–230 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. McKenney, R. J., Vershinin, M., Kunwar, A., Vallee, R. B. & Gross, S. P. LIS1 and NudE induce a persistent dynein force-producing state. Cell 141, 304–314 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang, J., Roberts, A. J., Leschziner, A. E. & Reck-Peterson, S. L. Lis1 acts as a “Clutch” between the ATPase and microtubule-binding domains of the dynein motor. Cell 150, 975–986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schroer, T. A. Dynactin. Annu. Rev. Cell Dev. Biol. 20, 759–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Holleran, E. A., Tokito, M. K., Karki, S. & Holzbaur, E. L. Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J. Cell Biol. 135, 1815–1829 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. King, S. J. & Schroer, T. A. Dynactin increases the processivity of the cytoplasmic dynein motor. Nat. Cell Biol. 2, 20–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Culver-Hanlon, T. L., Lex, S. A., Stephens, A. D., Quintyne, N. J. & King, S. J. A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nat. Cell Biol. 8, 264–270 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kardon, J. R., Reck-Peterson, S. L. & Vale, R. D. Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin. Proc. Natl Acad. Sci. USA 106, 5669–5674 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Holzbaur, E. L. F. et al. Homology of a 150K cytoplasmic dynein-associated polypeptide with the Drosophila gene Glued. Nature 351, 579–583 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Vaughan, K. T. & Vallee, R. B. Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J. Cell Biol. 131, 1507–1516 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Waterman-Storer, C. M., Karki, S. & Holzbaur, E. L. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc. Natl Acad. Sci. USA 92, 1634–1638 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vaughan, P. S., Miura, P., Henderson, M., Byrne, B. & Vaughan, K. T. A role for regulated binding of p150(Glued) to microtubule plus ends in organelle transport. J. Cell Biol. 158, 305–319 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Watson, P. & Stephens, D. J. Microtubule plus-end loading of p150Glued is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells. J. Cell Sci. 119, 2758–2767 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Dixit, R., Levy, J. R., Tokito, M., Ligon, L. A. & Holzbaur, E. L. F. Regulation of dynactin through the differential expression of p150(Glued) isoforms. J. Biol. Chem. 283, 33611–33619 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, H. et al. Microtubule binding by dynactin is required for microtubule organization but not cargo transport. J. Cell Biol. 176, 641–651 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moughamian, A. J. & Holzbaur, E. L. Dynactin is required for transport initiation from the distal axon. Neuron 74, 331–343 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lloyd, T. E. et al. The p150(Glued) CAP-Gly domain regulates initiation of retrograde transport at synaptic termini. Neuron 74, 344–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gross, S. P., Welte, M. A., Block, S. M. & Wieschaus, E. F. Coordination of opposite-polarity microtubule motors. J. Cell Biol. 156, 715–724 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haghnia, M. et al. Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol. Biol. Cell 18, 2081–2089 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McKenney, R. J., Weil, S. J., Scherer, J. & Vallee, R. B. Mutually exclusive cytoplasmic dynein regulation by NudE-Lis1 and dynactin. J. Biol. Chem. 286, 39615–39622 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Siglin, A. E. et al. Dynein and dynactin leverage their bivalent character to form a high-affinity interaction. PLoS ONE 8, e59453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lau, S. Y., Taneja, A. K. & Hodges, R. S. Synthesis of a model protein of defined secondary and quaternary structure. Effect of chain length on the stabilization and formation of two-stranded alpha-helical coiled-coils. J. Biol. Chem. 259, 13253–13261 (1984).

    CAS  PubMed  Google Scholar 

  24. Ross, J. L., Wallace, K., Shuman, H., Goldman, Y. E. & Holzbaur, E. L. F. Processive bidirectional motion of dynein–dynactin complexes in vitro. Nat. Cell Biol. 8, 562–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Mallik, R., Carter, B. C., Lex, S. A., King, S. J. & Gross, S. P. Cytoplasmic dynein functions as a gear in response to load. Nature 427, 649–652 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Z., Khan, S. & Sheetz, M. P. Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys. J. 69, 2011–2023 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tokito, M. K., Howland, D. S., Lee, V. M. & Holzbaur, E. L. Functionally distinct isoforms of dynactin are expressed in human neurons. Mol. Biol. Cell 7, 1167–1180 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quintyne, N. J. et al. Dynactin is required for microtubule anchoring at centrosomes. J. Cell Biol. 147, 321–334 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morgan, J. L., Song, Y. & Barbar, E. Structural dynamics and multiregion interactions in dynein–dynactin recognition. J. Biol. Chem. 286, 39349–39359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ori-McKenney, K. M., Xu, J., Gross, S. P. & Vallee, R. B. A cytoplasmic dynein tail mutation impairs motor processivity. Nat. Cell Biol. 12, 1228–1234 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DeWitt, M. A., Chang, A. Y., Combs, P. A. & Yildiz, A. Cytoplasmic dynein moves through uncoordinated stepping of the AAA + ring domains. Science 335, 221–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Qiu, W. et al. Dynein achieves processive motion using both stochastic and coordinated stepping. Nat. Struct. Mol. Biol. 19, 193–200 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weisbrich, A. et al. Structure–function relationship of CAP-Gly domains. Nat. Struct. Mol. Biol. 14, 959–967 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Rao, L. et al. The yeast dynein Dyn2-Pac11 complex is a dynein dimerization/processivity factor: structural and single-molecule characterization. Mol. Biol. Cell 24, 2362–2377 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ananthanarayanan, V. et al. Dynein motion switches from diffusive to directed upon cortical anchoring. Cell 153, 1526–1536 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Tang, X., Germain, B. S. & Lee, W-L. A novel patch assembly domain in Num1 mediates dynein anchoring at the cortex during spindle positioning. J. Cell Biol. 196, 743–756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scherer, J, Yi, J. & Vallee, R. B. PKA-dependent dynein cargo switching from lysosomes to adenovirus: a novel form of host-virus competition. J. Cell Biol. 205, 163–177 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schlager, M. A., Hoang, H. T., Urnavicius, L., Bullock, S. L. & Carter, A. P. In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J. 33, 1855–1868 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McKenney, R. J., Huynh, W., Tanenbaum, M. E., Bhabha, G. & Vale, R. D. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345, 337–341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paschal, B. M. et al. Characterization of a 50-kDa polypeptide in cytoplasmic dynein preparations reveals a complex with p150GLUED and a novel actin. J. Biol. Chem. 268, 15318–15323 (1993).

    CAS  PubMed  Google Scholar 

  41. Yi, J. Y. et al. High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport. J. Cell Biol. 195, 193–201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bremner, K. H. et al. Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit. Cell Host Microbe 6, 523–535 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sigua, R., Tripathy, S., Anand, P. & Gross, S. P. Isolation and purification of kinesin from Drosophila embryos. J. Vis. Exp. (2012).

  44. Paschal, B. M., Shpetner, H. S. & Vallee, R. B. Purification of brain cytoplasmic dynein and characterization of its in vitro properties. Methods Enzymol. 196, 181–191 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Mikami, A. et al. Molecular structure of cytoplasmic dynein 2 and its distribution in neuronal and ciliated cells. J. Cell Sci. 115, 4801–4808 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Bohm, K. J., Stracke, R. & Unger, E. Speeding up kinesin-driven microtubule gliding in vitro by variation of cofactor composition and physicochemical parameters. Cell Biol. Int. 24, 335–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Kelly, S. M., Jess, T. J. & Price, N. C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751, 119–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Kunwar, A. et al. Mechanical stochastic tug-of-war models cannot explain bidirectional lipid-droplet transport. Proc. Natl Acad. Sci. USA 108, 18960–18965 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Vershinin, M., Carter, B. C., Razafsky, D. S., King, S. J. & Gross, S. P. Multiple-motor based transport and its regulation by Tau. Proc. Natl Acad. Sci. USA 104, 87–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Mallik, R., Petrov, D., Lex, S. A., King, S. J. & Gross, S. P. Building complexity: an in vitro study of cytoplasmic dynein with in vivo implications. Curr. Biol. 15, 2075–2085 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Lang, M. J., Asbury, C. L., Shaevitz, J. W. & Block, S. M. An automated two-dimensional optical force clamp for single molecule studies. Biophys. J. 83, 491–501 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kerssemakers, J. W. et al. Assembly dynamics of microtubules at molecular resolution. Nature 442, 709–712 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Carter, B. C., Vershinin, M. & Gross, S. P. A comparison of step-detection methods: how well can you do? Biophys. J. 94, 306–319 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Pearson, C. G. et al. Measuring nanometer scale gradients in spindle microtubule dynamics using model convolution microscopy. Mol. Biol. Cell 17, 4069–4079 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carter, N. J. & Cross, R. A. Mechanics of the kinesin step. Nature 435, 308–312 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Carter, B. C., Shubeita, G. T. & Gross, S. P. Tracking single particles: a user-friendly quantitative evaluation. Phys. Biol. 2, 60–72 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. McKenney for help in initiating this project and A. Baffet for helpful comments on the manuscript. Support by GM102347 to R.B.V. and GM070676 to S.P.G.

Author information

Authors and Affiliations

Authors

Contributions

R.B.V., S.P.G., S.J.W. and S.K.T. designed experiments; S.K.T., S.J.W. and C.C. performed the experiments; P.A. provided kinesin; R.B.V., S.P.G., S.K.T., C.C. and S.J.W. wrote the paper.

Corresponding authors

Correspondence to Richard B. Vallee or Steven P. Gross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 3 Temperature dependent melting and reannealing of p150Glued CC1 and CC1B fragments.

Molar ellipticity of CC1 and CC1B at 222 nm was monitored under increasing and decreasing temperature. Unfolding was reversible. Tm values were 23.5 °C for CC1B and 33 °C for CC1. (One independent experiment)

Supplementary Figure 4 Additional examples of force traces and MSD curves.

(A) Video trace showing measurement of single dynein force followed by its run-length. Blue star marks force production, red arrow indicates turning off of optical trap, and blue arrow shows end of runlength (B) and (C): Force traces from dynein alone and with P150. Experiments were done at a bead binding fraction of 30%. (D): The MSD curve for beads with P150 alone (30% binding fraction) diffusing along microtubules. (E) The MSD curve for single-molecule dynein beads (30% bf) with CC1A, diffusing along MTs. (F, G): MSD curves for dynein (again 30% bf) with P150 (E) and P135 (F). The blue curves reflect the diffusing beads, whereas the red curves reflect the processively moving beads.

Supplementary Figure 5 Measurement of force distribution for diffusive beads.

(A) (left):Force trace of free bead, held in trap. The quadrant photo diode (QPD) signal was obtained at 4 kHz, with trap stiffness of 1.5 pN/100nm. (right):histogram of detected forces due to thermal motion for the free bead (B) Force trace for bead attached to microtubule by a single p150 1-555 without dynein. (C) Higher temporal resolution image of (B). (D) Distribution of displacements (from fits in (B)) from many traces (475 force events). (E, F, and G) (775 force events) Same as (A, B and C) for, dynein with p150 1-555. (H, I and J (518 force events)) Same as (A, B and C) for dynein with p135-CC1. In all cases, the QPD signal was averaged to 1 kHz and analysed using Kerssemakers’ step detection algorithm, with waiting time restricted to ≥ 50 ms. While (D) is described by a single Gaussian (no additional force production), (G) and (J) each require the sum of three Gaussian peaks. The small peaks indicate the presence of some force. We interpret these small forces as likely reflecting transient binding/release events by dynein (see Supplementary Discussion).

Supplementary Figure 6 Characterization of step detection.

Step sizes were measured with an optical trap and an acousto optic deflector (AOD) force feedback system on single-motor (30% binding fraction) beads. The bead was maintained at the trap center by AOD feedback every 40 nm (blue arrows in A). (A) A trace with detected steps (in red) for single kinesin moving at a velocity similar to dynein (500 nm s−1). (B, F, H and J) Simulated tracks with detected steps for kinesin (309 steps), dynein with 8nm steps only, dynein (number of steps = 659) and CC1B-dynein (428 steps). (C, D, G, I and K) Step size distributions determined from experiment (blue star, real tracks such as in Fig. 3a, b) and simulated tracks with real noise (red circles) for single-molecule kinesin with plus end directed 8 nm steps only, kinesin involving back-steps, dynein with minus end directed 8 nm steps only and for single dynein with and without CC1B (405 steps used in K). Purple open circles are the residual, indicating difference between distributions. (E) Integrated residual from (C) and (D) is smaller when back-steps are for kinesin are included. (L) Normalized step probability for dynein with and without CC1B. (M) Steps were detected from video tracking traces (48 traces) of moving beads coated with dynein or dynein/CC1B (30 frames/sec) without force feedback. Step distributions are in qualitative agreement with step detection from AODs.

Supplementary Figure 7 Characterization of lateral motion.

Beads with adsorbed kinesin, dynein, or dynein plus the p150Glued CC1B fragment were analyzed for bead motion perpendicular to the microtubule long axis (Y- bead position). (A) Example traces of Y-bead position vs. time for kinesin at saturating ATP. (B) Detected steps (red lines) from (A). (C) Gaussian distribution of detected steps (25 processive bead). (D) Lateral step size distribution of kinesin in the presence of AMP-PNP (20 beads checked). Distributions in (C) and (D) are similar indicating that kinesin does not take lateral steps. (E) Lateral step size distributions of dynein without ATP (black) or dynein (blue), and dynein with CC1B (red) with saturating ATP (428 lateral steps). (F and G) are example traces of Y-FLOP of bead for dynein and CC1B-dynein.

Supplementary Table 1 Summary of circular dichroism (CD) data for p150Glued fragments.
Supplementary Table 2 Stepping behaviour summary for kinesin, dynein, and dynein + CC1B.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, S., Weil, S., Chen, C. et al. Autoregulatory mechanism for dynactin control of processive and diffusive dynein transport. Nat Cell Biol 16, 1192–1201 (2014). https://doi.org/10.1038/ncb3063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing