Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Redox switch for actin

Subjects

Oxidation of actin methionine residues by the oxidation–reduction enzyme Mical is known to lead to actin filament depolymerization. SelR enzymes are now shown to reduce these oxidized actin methionines, revealing a regulated redox reaction mechanism through which cells control the assembly and disassembly of actin filaments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible function of the Mical–SelR redox system in a Drosophila growth cone.

References

  1. Hung, R. J. et al. Nature 463, 823–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hung, R. J., Pak, C. W. & Terman, J. R. Science 334, 1710–1713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, B. C. et al. Mol. Cell 51, 397–404 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hung, R. J., Spaeth, C. S., Yesilyurt, H. G. & Terman, J. R. Nat. Cell Biol. 15, 1445–1454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suzuki, T. et al. J. Biol. Chem. 277, 14933–14941 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Terman, J. R., Mao, T., Pasterkamp, R. J., Yu, H. H. & Kolodkin, A. L. Cell 109, 887–900 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Weide, T., Teuber, J., Bayer, M. & Barnekow, A. Biochem. Biophys. Res. Comm. 306, 79–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Tilney, L. G. & DeRosier, D. J. Proc. Natl Acad. Sci. USA 102, 18785–18792 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Kryukov, G. V., Kumar, R. A., Koc, A., Sun, Z. & Gladyshev, V. N. Proc. Natl Acad. Sci. USA 99, 4245–4250 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, Y., Gunput, R. A., Adolfs, Y. & Pasterkamp, R. J. Cell. Mol. Life Sci. 68, 4033–4044 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmidt, E. F., Shim, S. O. & Strittmatter, S. M. J. Neurosci. 28, 2287–2297 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Giridharan, S. S., Rohn, J. L., Naslavsky, N. & Caplan, S. J. Cell Sci. 125, 614–624 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Laing, N. G. et al. Hum. Mutat. 30, 1267–1277 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beuchle, D., Schwarz, H., Langegger, M., Koch, I. & Aberle, H. Mech. Dev. 124, 390–406 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Aberle.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aberle, H. Redox switch for actin. Nat Cell Biol 15, 1403–1404 (2013). https://doi.org/10.1038/ncb2890

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing