Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microtubules and Alp7–Alp14 (TACC–TOG) reposition chromosomes before meiotic segregation

Abstract

Tethering kinetochores at spindle poles facilitates their efficient capture and segregation by microtubules at mitotic onset in yeast. During meiotic prophase of fission yeast, however, kinetochores are detached from the poles, which facilitates meiotic recombination but may cause a risk of chromosome mis-segregation during meiosis. How cells circumvent this dilemma remains unclear. Here we show that an extensive microtubule array assembles from the poles at meiosis I onset and retrieves scattered kinetochores towards the poles to prevent chromosome drift. Moreover, the microtubule-associated protein complex Alp7–Alp14 (the fission yeast orthologues of mammalian TACC–TOG) is phosphorylated by Polo kinase, which promotes its meiosis-specific association to the outer kinetochore complex Nuf2–Ndc80 of scattered kinetochores, thereby assisting in capturing remote kinetochores. Although TOG was recently characterized as a microtubule polymerase, Dis1 (the other TOG orthologue in fission yeast), together with the Dam1 complex, plays a role in microtubule shortening to pull kinetochores polewards. Thus, microtubules and their binding proteins uniquely reconstitute chromosome configuration during meiosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microtubules rearrange the chromosome configuration before MI entry.
Figure 2: Dis1 and Dam1 promote kinetochore-dependent microtubule depolymerization.
Figure 3: Dis1 promotes stable kinetochore localization of the Dam1 complex during kinetochore retrieval.
Figure 4: Alp7–Alp14 localizes to scattered kinetochores independently of microtubules.
Figure 5: Loss of Alp14 from scattered kinetochores weakens the interaction between microtubules and kinetochores.
Figure 6: Phosphorylation of Alp7 by Polo enhances association with the Nuf2 kinetochore complex.
Figure 7: Alp7–Alp14 at kinetochores facilitates attachment to microtubules.
Figure 8: Artificial tethering of Alp7–Alp14 to kinetochores during mitosis enhances kinetochore–microtubule attachment when kinetochores are scattered by the nda3-311 mutation.

Similar content being viewed by others

References

  1. Weaver, B. A. A. & Cleveland, D. W. Does aneuploidy cause cancer? Curr. Opin. Cell Biol. 18, 658–667 (2006).

    Article  CAS  Google Scholar 

  2. Sheltzer, J. M. et al. Aneuploidy drives genomic instability in yeast. Science 333, 1026–1030 (2011).

    Article  CAS  Google Scholar 

  3. Funabiki, H., Hagan, I., Uzawa, S. & Yanagida, M. Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J. Cell Biol. 121, 961–976 (1993).

    Article  CAS  Google Scholar 

  4. Rabl, C. über Zellteilung. Morphol. Jahrbuch 10, 214–330 (1885).

    Google Scholar 

  5. Yamamoto, M., Imai, Y. & Watanabe, Y. The Molecular and Cellular Biology of the Yeast Saccharomyces 1037–1106 (Cold Spring Harbor Laboratory Press, 1997).

    Google Scholar 

  6. Chikashige, Y. et al. Telomere-led premeiotic chromosome movement in fission yeast. Science 264, 270–273 (1994).

    Article  CAS  Google Scholar 

  7. Sato, M., Toya, M. & Toda, T. Visualization of fluorescence-tagged proteins in fission yeast: The analysis of mitotic spindle dynamics using GFP-tubulin under the native promoter. Methods Mol. Biol. 545, 185–203 (2009).

    Article  CAS  Google Scholar 

  8. Saitoh, S., Takahashi, K. & Yanagida, M. Mis6, a fission yeast inner centromere protein, acts during G1/S and forms specialized chromatin required for equal segregation. Cell 90, 131–143 (1997).

    Article  CAS  Google Scholar 

  9. Cooper, J. P., Nimmo, E. R., Allshire, R. C. & Cech, T. R. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385, 744–747 (1997).

    Article  CAS  Google Scholar 

  10. Kilmartin, J. V. Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication. J. Cell Biol. 162, 1211–1221 (2003).

    Article  CAS  Google Scholar 

  11. Tomita, K. & Cooper, J. P. The telomere bouquet controls the meiotic spindle. Cell 130, 113–126 (2007).

    Article  CAS  Google Scholar 

  12. Kakui, Y., Sato, M., Tanaka, K. & Yamamoto, M. A novel fission yeast mei4 mutant that allows efficient synchronization of telomere dispersal and the first meiotic division. Yeast 28, 467–479 (2011).

    Article  CAS  Google Scholar 

  13. Yamamoto, A. et al. Spindle checkpoint activation at meiosis I advances anaphase II onset via meiosis-specific APC/C regulation. J. Cell Biol. 182, 277–288 (2008).

    Article  CAS  Google Scholar 

  14. Franco, A., Meadows, J. C. & Millar, J. B. The Dam1/DASH complex is required for the retrieval of unclustered kinetochores in fission yeast. J. Cell Sci. 120, 3345–3351 (2007).

    Article  CAS  Google Scholar 

  15. Gachet, Y. et al. Sister kinetochore recapture in fission yeast occurs by two distinct mechanisms, both requiring Dam1 and Klp2. Mol. Biol. Cell 19, 1646–1662 (2008).

    Article  CAS  Google Scholar 

  16. Tanaka, K. et al. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987–994 (2005).

    Article  CAS  Google Scholar 

  17. Grishchuk, E. L. & McIntosh, J. R. Microtubule depolymerization can drive poleward chromosome motion in fission yeast. EMBO J. 25, 4888–4896 (2006).

    Article  CAS  Google Scholar 

  18. Kitamura, E. et al. Kinetochores generate microtubules with distal plus ends: Their roles and limited lifetime in mitosis. Dev. Cell 18, 248–259 (2010).

    Article  CAS  Google Scholar 

  19. Westermann, S. et al. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565–569 (2006).

    Article  CAS  Google Scholar 

  20. Sanchez-Perez, I. et al. The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast. EMBO J. 24, 2931–2943 (2005).

    Article  CAS  Google Scholar 

  21. Hsu, K. S. & Toda, T. Ndc80 internal loop interacts with Dis1/TOG to ensure proper kinetochore-spindle attachment in fission yeast. Curr. Biol. 21, 214–220 (2011).

    Article  CAS  Google Scholar 

  22. Garcia, M. A., Vardy, L., Koonrugsa, N. & Toda, T. Fission yeast ch-TOG/XMAP215 homologue Alp14 connects mitotic spindles with the kinetochore and is a component of the Mad2-dependent spindle checkpoint. EMBO J. 20, 3389–3401 (2001).

    Article  CAS  Google Scholar 

  23. Nakaseko, Y., Goshima, G., Morishita, J. & Yanagida, M. M phase-specific kinetochore proteins in fission yeast: microtubule-associating Dis1 and Mtc1 display rapid separation and segregation during anaphase. Curr. Biol. 11, 537–549 (2001).

    Article  CAS  Google Scholar 

  24. Oliferenko, S. & Balasubramanian, M. K. Astral microtubules monitor metaphase spindle alignment in fission yeast. Nat. Cell Biol. 4, 816–820 (2002).

    Article  CAS  Google Scholar 

  25. Sato, M., Vardy, L., Garcia, M. A., Koonrugsa, N. & Toda, T. Interdependency of fission yeast Alp14/TOG and coiled coil protein Alp7 in microtubule localization and bipolar spindle formation. Mol. Biol. Cell 15, 1609–1622 (2004).

    Article  CAS  Google Scholar 

  26. Sato, M. & Toda, T. Alp7/TACC is a crucial target in Ran-GTPase-dependent spindle formation in fission yeast. Nature 447, 334–337 (2007).

    Article  CAS  Google Scholar 

  27. Tang, N. H., Takada, H., Hsu, K. S. & Toda, T. The internal loop of fission yeast Ndc80 binds Alp7/TACC-Alp14/TOG and ensures proper chromosome attachment. Mol. Biol. Cell 24, 1122–1133 (2013).

    Article  CAS  Google Scholar 

  28. Radcliffe, P., Hirata, D., Childs, D., Vardy, L. & Toda, T. Identification of novel temperature-sensitive lethal alleles in essential β-tubulin and nonessential α2-tubulin genes as fission yeast polarity mutants. Mol. Biol. Cell 9, 1757–1771 (1998).

    Article  CAS  Google Scholar 

  29. Dougherty, W. G., Parks, T. D., Cary, S. M., Bazan, J. F. & Fletterick, R. J. Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase. Virology 172, 302–310 (1989).

    Article  CAS  Google Scholar 

  30. Santaguida, S. & Musacchio, A. The life and miracles of kinetochores. EMBO J. 28, 2511–2531 (2009).

    Article  CAS  Google Scholar 

  31. Takeuchi, K. & Fukagawa, T. Molecular architecture of vertebrate kinetochores. Exp. Cell Res. 318, 1367–1374 (2012).

    Article  CAS  Google Scholar 

  32. Foley, E. A. & Kapoor, T. M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 14, 25–37 (2013).

    Article  CAS  Google Scholar 

  33. Nabetani, A., Koujin, T., Tsutsumi, C., Haraguchi, T. & Hiraoka, Y. A conserved protein, Nuf2, is implicated in connecting the centromere to the spindle during chromosome segregation: a link between the kinetochore function and the spindle checkpoint. Chromosoma 110, 322–334 (2001).

    Article  CAS  Google Scholar 

  34. Krapp, A., Del Rosario, E. C. & Simanis, V. The role of Schizosaccharomyces pombe dma1 in spore formation during meiosis. J. Cell Sci. 123, 3284–3293 (2010).

    Article  CAS  Google Scholar 

  35. Ohta, M., Sato, M. & Yamamoto, M. Spindle pole body components are reorganized during fission yeast meiosis. Mol. Biol. Cell 23, 1799–1811 (2012).

    Article  CAS  Google Scholar 

  36. Grallert, A. et al. Centrosomal MPF triggers the mitotic and morphogenetic switches of fission yeast. Nat. Cell Biol. 15, 88–95 (2013).

    Article  CAS  Google Scholar 

  37. Holland, S., Ioannou, D., Haines, S. & Brown, W. R. Comparison of Dam tagging and chromatin immunoprecipitation as tools for the identification of the binding sites for S. pombe CENP-C. Chromosome Res. 13, 73–83 (2005).

    Article  CAS  Google Scholar 

  38. Tanaka, K., Chang, H. L., Kagami, A. & Watanabe, Y. CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis. Dev. Cell 17, 334–343 (2009).

    Article  Google Scholar 

  39. Yokobayashi, S. & Watanabe, Y. The kinetochore protein Moa1 enables cohesion-mediated monopolar attachment at meiosis I. Cell 123, 803–817 (2005).

    Article  CAS  Google Scholar 

  40. Hiraoka, Y., Toda, T. & Yanagida, M. The NDA3 gene of fission yeast encodes beta-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell 39, 349–358 (1984).

    Article  CAS  Google Scholar 

  41. Grishchuk, E. L., Spiridonov, I. S. & McIntosh, J. R. Mitotic chromosome biorientation in fission yeast is enhanced by dynein and a minus-end-directed, kinesin-like protein. Mol. Biol. Cell 18, 2216–2225 (2007).

    Article  CAS  Google Scholar 

  42. Kitamura, E., Tanaka, K., Kitamura, Y. & Tanaka, T. U. Kinetochore microtubule interaction during S phase in Saccharomyces cerevisiae. Genes Dev. 21, 3319–3330 (2007).

    Article  CAS  Google Scholar 

  43. Goto, B., Okazaki, K. & Niwa, O. Cytoplasmic microtubular system implicated in de novo formation of a Rabl-like orientation of chromosomes in fission yeast. J. Cell Sci. 114, 2427–2435 (2001).

    CAS  PubMed  Google Scholar 

  44. Chikashige, Y. et al. Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125, 59–69 (2006).

    Article  CAS  Google Scholar 

  45. Yoshida, M. et al. Microtubule-organizing center formation at telomeres induces meiotic telomere clustering. J. Cell Biol. 200, 385–395 (2013).

    Article  CAS  Google Scholar 

  46. Tanaka, K., Kitamura, E., Kitamura, Y. & Tanaka, T. U. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. J. Cell Biol. 178, 269–281 (2007).

    Article  CAS  Google Scholar 

  47. Meyer, R. E. et al. Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast. Science 339, 1071–1074 (2013).

    Article  CAS  Google Scholar 

  48. Brouhard, G. J. et al. XMAP215 is a processive microtubule polymerase. Cell 132, 79–88 (2008).

    Article  CAS  Google Scholar 

  49. Al-Bassam, J. et al. Fission yeast Alp14 is a dose dependent plus end tracking microtubule polymerase. Mol. Biol. Cell 23, 2878–2890 (2012).

    Article  CAS  Google Scholar 

  50. Ayaz, P., Ye, X., Huddleston, P., Brautigam, C. A. & Rice, L. M. A TOG: αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. Science 337, 857–860 (2012).

    Article  CAS  Google Scholar 

  51. Al-Bassam, J. & Chang, F. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. Trends Cell Biol. 21, 604–614 (2011).

    Article  CAS  Google Scholar 

  52. Shirasu-Hiza, M., Coughlin, P. & Mitchison, T. Identification of XMAP215 as a microtubule-destabilizing factor in Xenopus egg extract by biochemical purification. J. Cell Biol. 161, 349–358 (2003).

    Article  CAS  Google Scholar 

  53. Van Breugel, M., Drechsel, D. & Hyman, A. Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end-binding microtubule destabilizer. J. Cell Biol. 161, 359–369 (2003).

    Article  CAS  Google Scholar 

  54. Bähler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    Article  Google Scholar 

  55. Sato, M., Dhut, S. & Toda, T. New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe. Yeast 22, 583–591 (2005).

    Article  CAS  Google Scholar 

  56. Yamamoto, A. & Hiraoka, Y. Monopolar spindle attachment of sister chromatids is ensured by two distinct mechanisms at the first meiotic division in fission yeast. EMBO J. 22, 2284–2296 (2003).

    Article  CAS  Google Scholar 

  57. Funaya, C. et al. Transient structure associated with the spindle pole body directs meiotic microtubule reorganization in S. pombe. Curr. Biol. 22, 562–574 (2012).

    Article  CAS  Google Scholar 

  58. Kerres, A. et al. The fission yeast kinetochore component Spc7 associates with the EB1 family member Mal3 and is required for kinetochore-spindle association. Mol. Biol. Cell 15, 5255–5267 (2004).

    Article  CAS  Google Scholar 

  59. Tsukahara, T., Tanno, Y. & Watanabe, Y. Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation. Nature 467, 719–723 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Uhlmann for support; Y. Hiraoka, J. Cooper, M. Toya, K. Tanaka and N. H. Tang for discussion; and S. Sazer (Baylor College of Medicine, USA), Y. Watanabe (University of Tokyo, Japan), Y. Hiraoka (Osaka University, Japan) and H. Murakami (Chuo University, Japan) for materials. N.O. is a research fellow of JSPS. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas ‘Cell Proliferation Control’ from MEXT, by Grants-in-Aid for Young Scientists (A) and for Scientific Research (B) from JSPS, by the Naito Foundation (to M.S.), by Grants-in-Aid for Specially Promoted Research and for Scientific Research (S) from JSPS (to M.Y.), and by Cancer Research UK (to T.T.). This work was also supported in part by the Global COE Program, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were designed by Y.K. with support from M.S. and performed by Y.K., except for Figs 1c,d, 2a, 4b,e and Supplementary Fig. S2b (by M.S.), and 6b (by N.O.). M.S. wrote the manuscript with support from Y.K., T.T. and M.Y.

Corresponding author

Correspondence to Masamitsu Sato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2307 kb)

Supplementary Table 1

Supplementary Information (XLSX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakui, Y., Sato, M., Okada, N. et al. Microtubules and Alp7–Alp14 (TACC–TOG) reposition chromosomes before meiotic segregation. Nat Cell Biol 15, 786–796 (2013). https://doi.org/10.1038/ncb2782

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2782

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing