Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of Par3 promotes breast cancer metastasis by compromising cell–cell cohesion

Abstract

The mechanisms by which tumour cells metastasize and the role that cell polarity proteins play in this process are not well understood. We report that partitioning defective protein 3 (Par3) is dysregulated in metastasis in human breast cancer, and is associated with a higher tumour grade and ErbB2-positive status. Downregulation of Par3 cooperated with ErbB2 to induce cell invasion and metastasis in vivo. Interestingly, the metastatic behaviour was not associated with an overt mesenchymal phenotype. However, loss of Par3 inhibited E-cadherin junction stability, disrupted membrane and actin dynamics at cell–cell junctions and decreased cell–cell cohesion in a manner dependent on the Tiam1/Rac–GTP pathway. Inhibition of this pathway restored E-cadherin junction stability and blocked invasive behaviour of cells lacking Par3, suggesting that loss of Par3 promotes metastatic behaviour of ErbB2-induced tumour epithelial cells by decreasing cell–cell cohesion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of Par3 cooperates with ErbB2 to induce invasive behaviour in mammary epithelial cells.
Figure 2: Downregulation of Par3 promotes metastasis without EMT.
Figure 3: Loss of Par3 weakens cell–cell adhesions and inhibits E-cadherin junction stability.
Figure 4: Loss of Par3 induces aberrant activation of Tiam1–Rac signalling.
Figure 5: Contribution of Tiam1–Rac and ErbB2 signalling to the Par3-loss-induced phenotype.
Figure 6: Loss of Par3 induces changes in actin organization and mislocalizes the Arp2/3 complex.
Figure 7: Loss of Par3 introduces changes in actin and E-cadherin dynamics at cell–cell junctions.
Figure 8: Dysregulation of Par3 in human breast cancer.

Similar content being viewed by others

References

  1. Gomes, J. E. & Bowerman, B. Caenorhabditis elegans par genes. Curr. Biol. 12, R444 (2002).

    Article  CAS  Google Scholar 

  2. Kirby, C., Kusch, M. & Kemphues, K. Mutations in the par genes of Caenorhabditis elegans affect cytoplasmic reorganization during the first cell cycle. Dev. Biol. 142, 203–215 (1990).

    Article  CAS  Google Scholar 

  3. Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    Article  CAS  Google Scholar 

  4. Suzuki, A. & Ohno, S. The PAR-aPKC system: lessons in polarity. J. Cell Sci. 119, 979–987 (2006).

    Article  CAS  Google Scholar 

  5. Mellman, I. & Nelson, W. J. Coordinated protein sorting, targeting and distribution in polarized cells. Nat. Rev. Mol. Cell Biol. 9, 833–845 (2008).

    Article  CAS  Google Scholar 

  6. Aranda, V., Nolan, M. E. & Muthuswamy, S. K. Par complex in cancer: a regulator of normal cell polarity joins the dark side. Oncogene 27, 6878–6887 (2008).

    Article  CAS  Google Scholar 

  7. Aranda, V. et al. Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat. Cell Biol. 8, 1235–1245 (2006).

    Article  CAS  Google Scholar 

  8. Eder, A. M. et al. Atypical PKCι contributes to poor prognosis through loss of apical-basal polarity and cyclin E overexpression in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 12519–12524 (2005).

    Article  CAS  Google Scholar 

  9. Nolan, M. E. et al. The polarity protein Par6 induces cell proliferation and is overexpressed in breast cancer. Cancer Res. 68, 8201–8209 (2008).

    Article  CAS  Google Scholar 

  10. Regala, R. P. et al. Atypical protein kinase C iota is an oncogene in human non-small cell lung cancer. Cancer Res. 65, 8905–8911 (2005).

    Article  CAS  Google Scholar 

  11. Rothenberg, S. M. et al. A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers. Cancer Res. 70, 2158–2164 (2010).

    Article  CAS  Google Scholar 

  12. Zen, K. et al. Defective expression of polarity protein PAR-3 gene (PARD3) in esophageal squamous cell carcinoma. Oncogene 28, 2910–2918 (2009).

    Article  CAS  Google Scholar 

  13. Etemad-Moghadam, B., Guo, S. & Kemphues, K. J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83, 743–752 (1995).

    Article  CAS  Google Scholar 

  14. Ebnet, K. et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J. 20, 3738–3748 (2001).

    Article  CAS  Google Scholar 

  15. Takekuni, K. et al. Direct binding of cell polarity protein PAR-3 to cell–cell adhesion molecule nectin at neuroepithelial cells of developing mouse. J. Biol. Chem. 278, 5497–5500 (2003).

    Article  CAS  Google Scholar 

  16. Feng, W., Wu, H., Chan, L. N. & Zhang, M. Par-3-mediated junctional localization of the lipid phosphatase PTEN is required for cell polarity establishment. J. Biol. Chem. 283, 23440–23449 (2008).

    Article  CAS  Google Scholar 

  17. Nagai-Tamai, Y., Mizuno, K., Hirose, T., Suzuki, A. & Ohno, S. Regulated protein–protein interaction between aPKC and PAR-3 plays an essential role in the polarization of epithelial cells. Gen. Cells 7, 1161–1171 (2002).

    Article  CAS  Google Scholar 

  18. Wu, H. et al. PDZ domains of Par-3 as potential phosphoinositide signalling integrators. Mol. Cell 28, 886–898 (2007).

    Article  CAS  Google Scholar 

  19. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).

    Article  CAS  Google Scholar 

  20. Yamanaka, T. et al. PAR-6 regulates aPKC activity in a novel way and mediates cell–cell contact-induced formation of the epithelial junctional complex. Gen. Cells 6, 721–731 (2001).

    Article  CAS  Google Scholar 

  21. Mertens, A. E., Rygiel, T. P., Olivo, C., van der Kammen, R. & Collard, J. G. The Rac activator Tiam1 controls tight junction biogenesis in keratinocytes through binding to and activation of the Par polarity complex. J. Cell Biol. 170, 1029–1037 (2005).

    Article  CAS  Google Scholar 

  22. Chen, X. & Macara, I. G. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat. Cell Biol. 7, 262–269 (2005).

    Article  CAS  Google Scholar 

  23. Zhang, H. & Macara, I. G. The PAR-6 polarity protein regulates dendritic spine morphogenesis through p190 RhoGAP and the Rho GTPase. Dev. Cell 14, 216–226 (2008).

    Article  Google Scholar 

  24. Muthuswamy, S. K., Gilman, M. & Brugge, J. S. Controlled dimerization of ErbB receptors provides evidence for differential signalling by homo- and heterodimers. Mol. Cell Biol. 19, 6845–6857 (1999).

    Article  CAS  Google Scholar 

  25. McCaffrey, L. M. & Macara, I. G. The Par3/aPKC interaction is essential for end bud remodelling and progenitor differentiation during mammary gland morphogenesis. Genes Dev. 23, 1450–1460 (2009).

    Article  CAS  Google Scholar 

  26. Andrechek, E. R. et al. Amplification of the neu/erbB-2 oncogene in a mousemodel of mammary tumourigenesis. Proc. Natl Acad. Sci. USA 97, 3444–3449 (2000).

    Article  CAS  Google Scholar 

  27. de Rooij, J., Kerstens, A., Danuser, G., Schwartz, M. A. & Waterman-Storer, C. M. Integrin-dependent actomyosin contraction regulates epithelial cell scattering. J. Cell Biol. 171, 153–164 (2005).

    Article  CAS  Google Scholar 

  28. D’Souza, B. & Taylor-Papadimitriou, J. Overexpression of ERBB2 in human mammary epithelial cells signals inhibition of transcription of the E-cadherin gene. Proc. Natl Acad. Sci. USA 91, 7202–7206 (1994).

    Article  Google Scholar 

  29. Shimoyama, Y. et al. Cadherin cell-adhesion molecules in human epithelial tissues and carcinomas. Cancer Res. 49, 2128–2133 (1989).

    CAS  PubMed  Google Scholar 

  30. Cavey, M., Rauzi, M., Lenne, P-F. & Lecuit, T. A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature 453, 751–756 (2008).

    Article  CAS  Google Scholar 

  31. Baum, B. & Georgiou, M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodelling. J. Cell Biol. 192, 907–917 (2011).

    Article  CAS  Google Scholar 

  32. Braga, V. M., Machesky, L. M., Hall, A. & Hotchin, N. A. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell–cell contacts. J. Cell Biol. 137, 1421–1431 (1997).

    Article  CAS  Google Scholar 

  33. Chu, Y. S. et al. Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodelling through Rac and Cdc42. J. Cell Biol. 167, 1183–1194 (2004).

    Article  CAS  Google Scholar 

  34. Kraemer, A., Goodwin, M., Verma, S., Yap, A. S. & Ali, R. G. Rac is a dominant regulator of cadherin-directed actin assembly that is activated by adhesive ligation independently of Tiam1. Am. J. Physiol. Cell Physiol. 292, C1061–C1069 (2007).

    Article  CAS  Google Scholar 

  35. Arthur, W. T., Ellerbroek, S. M., Der, C. J., Burridge, K. & Wennerberg, K. XPLN, a guanine nucleotide exchange factor for RhoA and RhoB, but not RhoC. J. Biol. Chem. 277, 42964–42972 (2002).

    Article  CAS  Google Scholar 

  36. Garcia-Mata, R. et al. Analysis of activated GAPs and GEFs in cell lysates. Methods Enzymol. 406, 425–437 (2006).

    Article  CAS  Google Scholar 

  37. Benard, V. & Bokoch, G. M. Assay of Cdc42, Rac, and Rho GTPase activation by affinity methods. Methods Enzymol. 345, 349–359 (2002).

    Article  Google Scholar 

  38. Itoh, R. E. et al. Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol. Cell Biol. 22, 6582–6591 (2002).

    Article  CAS  Google Scholar 

  39. Stam, J. C. et al. Targeting of Tiam1 to the plasma membrane requires the cooperative function of the N-terminal pleckstrin homology domain and an adjacent protein interaction domain. J. Biol. Chem. 272, 28447–28454 (1997).

    Article  CAS  Google Scholar 

  40. Gao, Y., Dickerson, J. B., Guo, F., Zheng, J. & Zheng, Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc. Natl Acad. Sci. USA 101, 7618–7623 (2004).

    Article  CAS  Google Scholar 

  41. Yamazaki, D., Oikawa, T. & Takenawa, T. Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell–cell adhesion. J. Cell Sci. 120, 86–100 (2007).

    Article  CAS  Google Scholar 

  42. Yamada, S. & Nelson, W. J. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell–cell adhesion. J. Cell Biol. 178, 517–527 (2007).

    Article  CAS  Google Scholar 

  43. Welch, M. D., DePace, A. H., Verma, S., Iwamatsu, A. & Mitchison, T. J. The Human Arp2/3 Complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138, 375–384 (1997).

    Article  CAS  Google Scholar 

  44. Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605–607 (2008).

    Article  CAS  Google Scholar 

  45. Lampkin, S. R. & Allred, D. C. Preparation of paraffin blocks and sections containing multiple tissue samples using a skin biopsy punch. J. Histotechnol. 13, 121–122 (1990).

    Article  Google Scholar 

  46. Ling, C., Zuo, D., Xue, B., Muthuswamy, S. & Muller, W. J. A novel role for 14-3-3sigma in regulating epithelial cell polarity. Genes Dev. 24, 947–956 (2010).

    Article  CAS  Google Scholar 

  47. Lu, J. et al. 14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition. Cancer Cell 16, 195–207 (2009).

    Article  CAS  Google Scholar 

  48. Nance, J. PAR proteins and the establishment of cell polarity during C. elegans development. Bioessays 27, 126–135 (2005).

    Article  CAS  Google Scholar 

  49. Hurd, T. W. et al. Phosphorylation-dependent binding of 14-3-3 to the polarity protein Par3 regulates cell polarity in mammalian epithelia. Curr. Biol. 13, 2082–2090 (2003).

    Article  CAS  Google Scholar 

  50. Iwaya, K., Norio, K. & Mukai, K. Coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast carcinoma. Mod. Pathol. 20, 339–343 (2007).

    Article  CAS  Google Scholar 

  51. Nurnberg, A., Kitzing, T. & Grosse, R. Nucleating actin for invasion. Nat. Rev. Cancer 11, 177–187 (2011).

    Article  Google Scholar 

  52. Mizutani, K., Miki, H., He, H., Maruta, H. & Takenawa, T. Essential role of neural Wiskott-Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts. Cancer Res. 62, 669–674 (2002).

    CAS  PubMed  Google Scholar 

  53. Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. & Weis, W. I. α-catenin is a molecular switch that binds E-cadherin- β-catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005).

    Article  CAS  Google Scholar 

  54. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–2004 (2010).

    Article  CAS  Google Scholar 

  55. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  Google Scholar 

  56. Rhim, A. D. et al. EMT and dissemination precede pancreatic tumour formation. Cell 148, 349–361 (2012).

    Article  CAS  Google Scholar 

  57. McCaffrey, L. M., Montalbano, J., Mihai, C. & Macara, I. G. Loss of the par3 polarity protein promotes breast tumourigenesis and metastasis. Cancer Cell 22, 601–614 (2012).

    Article  CAS  Google Scholar 

  58. Thompson, E. W., Newgreen, D. F. & Tarin, D. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res. 65, 5991–5995 (2005).

    Article  CAS  Google Scholar 

  59. Paddison, P. J. et al. Cloning of short hairpin RNAs for gene knockdown in mammalian cells. Nat. Methods 1, 163–167 (2004).

    Article  CAS  Google Scholar 

  60. Muthuswamy, S. K., Li, D., Lelievre, S., Bissell, M. J. & Brugge, J. S. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat. Cell Biol. 3, 785–792 (2001).

    Article  CAS  Google Scholar 

  61. Lin, G., Aranda, V., Muthuswamy, S. K. & Tonks, N. K. Identification of PTPN23 as a novel regulator of cell invasion in mammary epithelial cells from a loss-of-function screen of the ‘PTP-ome’. Genes Dev. 25, 1412–1425 (2011).

    Article  CAS  Google Scholar 

  62. Zhang, X. A. et al. Function of the tetraspanin CD151- α6β1 integrin complex during cellular morphogenesis. Mol. Biol. Cell 13, 1–11 (2002).

    Article  Google Scholar 

  63. Feige, J. N., Sage, D., Wahli, W., Desvergne, B. & Gelman, L. PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc. Res. Techniq. 68, 51–58 (2005).

    Article  CAS  Google Scholar 

  64. Zhang, M. et al. Identification of tumour-initiating cells in a p53-null mouse model of breast cancer. Cancer Res. 68, 4674–4682 (2008).

    Article  CAS  Google Scholar 

  65. Ehmann, U. K. et al. Cultured mouse mammary epithelial cells: normal phenotype after implantation. J. Natl Cancer Inst. 78, 751–757 (1987).

    CAS  PubMed  Google Scholar 

  66. Zhan, L. et al. Deregulation of scribble promotes mammary tumourigenesis and reveals a role for cell polarity in carcinoma. Cell 135, 865–878 (2008).

    Article  CAS  Google Scholar 

  67. Elston, C. W. & Ellis, I. O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. C. W. Elston & I. O. Ellis. Histopathology 1991; 19; 403–410. Histopathology 41, 151–152 (1991) (discussion 152–153; 2002).

    Article  Google Scholar 

  68. Harvey, J. M., Clark, G. M., Osborne, C. K. & Allred, D. C. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J. Clin. Oncol. 17, 1474–1481 (1999).

    Article  CAS  Google Scholar 

  69. Wolff, A. C. et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch. Pathol. Lab. Med. 131, 18–43 (2007).

    CAS  PubMed  Google Scholar 

  70. Allred, D. C., Harvey, J. M., Berardo, M. & Clark, G. M. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod. Pathol. 11, 155–168 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank W. J. Muller (McGill University, Canada) for the NDL transgenic mice, I. Macara (Univ of Virginia, USA) for the Tiam1 cDNA, M. Matsuda (Kyoto University, Japan) for the Raichu-Rac plasmid and D. Barber (UCSF, USA) for sharing the anti-ARPC2 antibody. We thank J. Haynes for critical reading of the manuscript and M. Egeblad and R. Sordella for helpful comments. We thank S. Hearn for assistance with microscopy and C. Camarda for assistance with the graphic abstract. We thank members of the Muthuswamy laboratory for critical comments on the manuscripts and insightful discussions. This work was supported by CA098830, BC075024, Era of Hope Scholar award from DOD Breast Cancer Research Program; Rita Allen Foundation, Lee K Margaret Lau Chair for breast cancer research and Campbell Family Institute for Breast cancer research to S.K.M. This was also financially supported in part by the Ontario Ministry of Health and Long Term Care. The views expressed do not necessarily reflect those of the OMOHLTC.

Author information

Authors and Affiliations

Authors

Contributions

K.K. performed Transwell invasion assays in Figs 1d,g 5g, B.X. conducted the rest of the experiments. S.K.M. conceived and directed the study, B.X. and S.K.M. prepared the manuscript. D.C.A. provided the human tissues, read, quantified and interpreted the IHC analysis.

Corresponding author

Correspondence to Senthil K. Muthuswamy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1663 kb)

Supplementary Table 1

Supplementary Information (XLSX 11 kb)

Supplementary Table 2

Supplementary Information (XLSX 11 kb)

Actin and E-cadherin dynamics at cell-cell junctions.

10A. control or 10A. Par3-shRNA cells expressing E-cad–GFP and LifeAct–RFP were imaged in the middle of the cell (1.5 mm above the bottom) at the rate of 12 frames per minute for 10 minutes. (MOV 2913 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, B., Krishnamurthy, K., Allred, D. et al. Loss of Par3 promotes breast cancer metastasis by compromising cell–cell cohesion. Nat Cell Biol 15, 189–200 (2013). https://doi.org/10.1038/ncb2663

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2663

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer