Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multipotent and unipotent progenitors contribute to prostate postnatal development

Abstract

The prostate is a glandular epithelium composed of basal, luminal and neuroendocrine cells that originate from the urogenital sinus during embryonic development. After birth, the prostate keeps developing until the end of puberty. Here, we used inducible genetic lineage tracing experiments in mice to investigate the cellular hierarchy that governs prostate postnatal development. We found that prostate postnatal development is mediated by basal multipotent stem cells that differentiate into basal, luminal and neuroendocrine cells, as well as by unipotent basal and luminal progenitors. Clonal analysis of basal cells revealed the existence of bipotent and unipotent basal progenitors as well as basal cells already committed to the luminal lineage with intermediate cells co-expressing basal and luminal markers associated with this commitment step. The existence of multipotent basal progenitors during prostate postnatal development contrasts with the distinct pools of unipotent basal and luminal stem cells that mediate adult prostate regeneration. Our results uncover the cellular hierarchy acting during prostate development and will be instrumental in defining the cellular origin and the mechanisms underlying prostate cancer initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basal cells give rise to basal, luminal and neuroendocrine cells during early postnatal development.
Figure 2: Basal cells give rise to basal, luminal and neuroendocrine cells during late postnatal development.
Figure 3: Multipotent and unipotent progenitors revealed by clonal analysis.
Figure 4: Intermediate cells and luminal differentiation of basal progenitors.
Figure 5: Unipotent luminal progenitors contribute to the luminal lineage expansion during early postnatal prostate development.
Figure 6: Unipotent luminal progenitors contribute to the luminal lineage expansion during late postnatal prostate development.
Figure 7: K18CREER/RosaYFP lineage tracing during late prostate postnatal development.
Figure 8: Model of the prostate cellular hierarchy during postnatal development, homeostasis and regeneration.

Similar content being viewed by others

References

  1. Timms, B. G. Prostate development: a historical perspective. Differentiation 76, 565–577 (2008).

    Article  CAS  Google Scholar 

  2. Cunha, G. R. et al. The endocrinology and developmental biology of the prostate. Endocr. Rev. 8, 338–362 (1987).

    Article  CAS  Google Scholar 

  3. Shen, M. M. & Abate-Shen, C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev. 24, 1967–2000 (2010).

    Article  CAS  Google Scholar 

  4. Kasper, S. Exploring the origins of the normal prostate and prostate cancer stem cell. Stem Cell Rev. 4, 193–201 (2008).

    Article  CAS  Google Scholar 

  5. Signoretti, S. et al. p63 is a prostate basal cell marker and is required for prostate development. Am. J. Pathol. 157, 1769–1775 (2000).

    Article  CAS  Google Scholar 

  6. Lilja, H. & Abrahamsson, P. A. Three predominant proteins secreted by the human prostate gland. Prostate 12, 29–38 (1988).

    Article  CAS  Google Scholar 

  7. Peehl, D. M., Sellers, R. G. & McNeal, J. E. Keratin 19 in the adult human prostate: tissue and cell culture studies. Cell Tissue Res. 285, 171–176 (1996).

    Article  CAS  Google Scholar 

  8. Xue, Y., Smedts, F., Debruyne, F. M., de la Rosette, J. J. & Schalken, J. A. Identification of intermediate cell types by keratin expression in the developing human prostate. Prostate 34, 292–301 (1998).

    Article  CAS  Google Scholar 

  9. Wang, Y., Hayward, S., Cao, M., Thayer, K. & Cunha, G. Cell differentiation lineage in the prostate. Differentiation 68, 270–279 (2001).

    Article  CAS  Google Scholar 

  10. Hudson, D. L. et al. Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. J. Histochem. Cytochem. 49, 271–278 (2001).

    Article  CAS  Google Scholar 

  11. Taylor, R. A., Toivanen, R. & Risbridger, G. P. Stem cells in prostate cancer: treating the root of the problem. Endocr. Relat. Cancer 17, R273–R285 (2010).

    Article  CAS  Google Scholar 

  12. Marker, P. C., Donjacour, A. A., Dahiya, R. & Cunha, G. R. Hormonal, cellular, and molecular control of prostatic development. Dev. Biol. 253, 165–174 (2003).

    Article  CAS  Google Scholar 

  13. Staack, A., Donjacour, A. A., Brody, J., Cunha, G. R. & Carroll, P. Mouse urogenital development: a practical approach. Differentiation 71, 402–413 (2003).

    Article  Google Scholar 

  14. Blanpain, C., Horsley, V. & Fuchs, E. Epithelial stem cells: turning over new leaves. Cell 128, 445–458 (2007).

    Article  CAS  Google Scholar 

  15. Cunha, G. R. Mesenchymal-epithelial interactions: past, present, and future. Differentiation 76, 578–586 (2008).

    Article  CAS  Google Scholar 

  16. Cunha, G. R., Chung, L. W., Shannon, J. M., Taguchi, O. & Fujii, H. Hormone-induced morphogenesis and growth: role of mesenchymal-epithelial interactions. Recent Prog. Horm Res. 39, 559–598 (1983).

    CAS  PubMed  Google Scholar 

  17. Wu, C. T. et al. Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proc. Natl Acad. Sci. USA 104, 12679–12684 (2007).

    Article  CAS  Google Scholar 

  18. Sugimura, Y., Cunha, G. R. & Donjacour, A. A. Morphogenesis of ductal networks in the mouse prostate. Biol. Reprod. 34, 961–971 (1986).

    Article  CAS  Google Scholar 

  19. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718 (1999).

    Article  CAS  Google Scholar 

  20. Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713 (1999).

    Article  CAS  Google Scholar 

  21. Kurita, T., Medina, R. T., Mills, A. A. & Cunha, G. R. Role of p63 and basal cells in the prostate. Development 131, 4955–4964 (2004).

    Article  CAS  Google Scholar 

  22. Signoretti, S. et al. p63 regulates commitment to the prostate cell lineage. Proc. Natl Acad. Sci. USA 102, 11355–11360 (2005).

    Article  CAS  Google Scholar 

  23. English, H. F., Santen, R. J. & Isaacs, J. T. Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 11, 229–242 (1987).

    Article  CAS  Google Scholar 

  24. Evans, G. S. & Chandler, J. A. Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate 11, 339–351 (1987).

    Article  CAS  Google Scholar 

  25. Xin, L., Lukacs, R. U., Lawson, D. A., Cheng, D. & Witte, O. N. Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells 25, 2760–2769 (2007).

    Article  CAS  Google Scholar 

  26. Goldstein, A. S. et al. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc. Natl Acad. Sci. USA 105, 20882–20887 (2008).

    Article  CAS  Google Scholar 

  27. Leong, K. G., Wang, B. E., Johnson, L. & Gao, W.Q. Generation of a prostate from a single adult stem cell. Nature 456, 804–808 (2008).

    Article  CAS  Google Scholar 

  28. Lawson, D. A., Xin, L., Lukacs, R. U., Cheng, D. & Witte, O. N. Isolation and functional characterization of murine prostate stem cells. Proc. Natl Acad. Sci. USA 104, 181–186 (2007).

    Article  CAS  Google Scholar 

  29. Wang, X. et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495–500 (2009).

    Article  CAS  Google Scholar 

  30. Liu, J. et al. Regenerated luminal epithelial cells are derived from preexisting luminal epithelial cells in adult mouse prostate. Mol. Endocrinol. 25, 1849–1857 (2011).

    Article  CAS  Google Scholar 

  31. Choi, N., Zhang, B., Zhang, L., Ittmann, M. & Xin, L. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21, 253–265 (2012).

    Article  CAS  Google Scholar 

  32. Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479, 189–193 (2011).

    Article  CAS  Google Scholar 

  33. Blackwood, J. K. et al. In situ lineage tracking of human prostatic epithelial stem cell fate reveals a common clonal origin for basal and luminal cells. J. Pathol. 225, 181–188 (2011).

    Article  CAS  Google Scholar 

  34. Gaisa, N. T. et al. Clonal architecture of human prostatic epithelium in benign and malignant conditions. J. Pathol. 225, 172–180 (2011).

    Article  CAS  Google Scholar 

  35. Goldstein, A. S., Huang, J., Guo, C., Garraway, I. P. & Witte, O. N. Identification of a cell of origin for human prostate cancer. Science 329, 568–571 (2010).

    Article  CAS  Google Scholar 

  36. Trotman, L. C. et al. Pten dose dictates cancer progression in the prostate. PLoS Biol. 1, E59 (2003).

    Article  Google Scholar 

  37. Wang, S. et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209–221 (2003).

    Article  CAS  Google Scholar 

  38. Ratnacaram, C. K. et al. Temporally controlled ablation of PTEN in adult mouse prostate epithelium generates a model of invasive prostatic adenocarcinoma. Proc. Natl Acad. Sci. USA 105, 2521–2526 (2008).

    Article  CAS  Google Scholar 

  39. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4–11 (2001).

    Article  CAS  Google Scholar 

  40. Nguyen, H., Rendl, M. & Fuchs, E. Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 127, 171–183 (2006).

    Article  CAS  Google Scholar 

  41. Perl, A. K., Wert, S. E., Nagy, A., Lobe, C. G. & Whitsett, J. A. Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc. Natl Acad. Sci. USA 99, 10482–10487 (2002).

    Article  CAS  Google Scholar 

  42. Van Keymeulen, A. et al. Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J. Cell Biol. 187, 91–100 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues who provided us with reagents, which are cited in the text. We thank our colleagues from the Blanpain laboratory and C. Govaerts for their comments on the manuscript and J-M. Vanderwinden and F. Bollet-Quivogne for their help with confocal imaging. C.B. and A.V.K. are chercheur qualifié, M.O. is a collaborateur scientifique of the FRS/FNRS. C.B. is an investigator of WELBIO. This work was supported by the FNRS, TELEVIE, the program d’excellence CIBLES of the Wallonia Region, a research grant from the Fondation Contre le Cancer, the ULB fondation, the fond Gaston Ithier, a starting grant of the European Research Council (ERC) and the EMBO Young Investigator Program.

Author information

Authors and Affiliations

Authors

Contributions

M.O., A.V.K. and C.B. designed the experiments and performed data analysis. M.O. and A.V.K. performed most of the experiments. B.D.S. performed mathematical modelling and data analysis. Y.A. generated K8CREER transgenic mice. G.B. and N.S. provided technical support. M.O. and A.V.K. prepared the figures. C.B. wrote the manuscript.

Corresponding authors

Correspondence to Marielle Ousset, Alexandra Van Keymeulen or Cédric Blanpain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 721 kb)

Supplementary Note

Supplementary Information (PDF 158 kb)

Supplementary Table 1

Supplementary Information (XLSX 10 kb)

Supplementary Table 2

Supplementary Information (XLSX 13 kb)

Supplementary Table 3

Supplementary Information (XLSX 11 kb)

Supplementary Table 4

Supplementary Information (XLSX 9 kb)

Supplementary Table 5

Supplementary Information (XLSX 10 kb)

Supplementary Table 6

Supplementary Information (XLSX 10 kb)

Supplementary Table 7

Supplementary Information (XLSX 10 kb)

Supplementary Table 8

Supplementary Information (XLSX 10 kb)

Supplementary Table 9

Supplementary Information (XLSX 10 kb)

Supplementary Table 10

Supplementary Information (XLSX 12 kb)

Supplementary Table 11

Supplementary Information (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ousset, M., Van Keymeulen, A., Bouvencourt, G. et al. Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat Cell Biol 14, 1131–1138 (2012). https://doi.org/10.1038/ncb2600

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2600

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing