Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MYC suppresses cancer metastasis by direct transcriptional silencing of αv and β3 integrin subunits

Abstract

Overexpression of MYC transforms cells in culture, elicits malignant tumours in experimental animals and is found in many human tumours. We now report the paradoxical finding that this powerful oncogene can also act as a suppressor of cell motility, invasiveness and metastasis. Overexpression of MYC stimulated proliferation of breast cancer cells both in culture and in vivo as expected, but inhibited motility and invasiveness in culture, and lung and liver metastases in xenografted tumours. We show further that MYC represses transcription of both subunits of αvβ3 integrin, and that exogenous expression of β3 integrin in human breast cancer cells that do not express this integrin rescues invasiveness and migration when MYC is downregulated. These data uncover an unexpected function of MYC, provide an explanation for the hitherto puzzling literature on the relationship between MYC and metastasis, and reveal a variable that could influence the development of therapies that target MYC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elevated MYC expression impedes the invasiveness of human breast cancer cells.
Figure 2: Elevated MYC expression inhibits metastasis of human breast cancer cells.
Figure 3: MYC modulates cell shape, actin cytoskeleton, focal adhesion formation, and adhesion to and migration towards ECM.
Figure 4: MYC downregulates the expression of αv and β3 integrin genes through binding to their proximal promoters.
Figure 5: MYC affects breast cancer cell invasiveness by suppressing integrin αv and β3subunits.
Figure 6: MYC and E-cadherin can prevent β3-integrin-induced invasion.

Similar content being viewed by others

References

  1. Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699 (2000).

    Article  CAS  Google Scholar 

  2. Pelengaris, S., Khan, M. & Evan, G. c-MYC: more than just a matter of life and death. Nat. Rev. Cancer 2, 764–776 (2002).

    Article  CAS  Google Scholar 

  3. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell Biol. 19, 1–11 (1999).

    Article  CAS  Google Scholar 

  4. Kuttler, F. & Mai, S. c-Myc, genomic instability and disease. Genome Dyn. 1, 171–190 (2006).

    Article  CAS  Google Scholar 

  5. Oster, S. K., Ho, C. S., Soucie, E. L. & Penn, L. Z. The myc oncogene: MarvelouslY Complex. Adv. Cancer Res. 84, 81–154 (2002).

    Article  CAS  Google Scholar 

  6. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 6, 635–645 (2005).

    Article  CAS  Google Scholar 

  7. Meyer, N. & Penn, L. Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer 8, 976–990 (2008).

    Article  CAS  Google Scholar 

  8. Nesbit, C. E., Tersak, J. M. & Prochownik, E. V. MYC oncogenes and human neoplastic disease. Oncogene 18, 3004–3016 (1999).

    Article  CAS  Google Scholar 

  9. Alitalo, K. & Schwab, M. Oncogene amplification in tumor cells. Adv. Cancer Res. 47, 235–281 (1986).

    Article  CAS  Google Scholar 

  10. Boxer, R. B., Jang, J. W., Sintasath, L. & Chodosh, L. A. Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 6, 577–586 (2004).

    Article  CAS  Google Scholar 

  11. Liao, D. J. & Dickson, R. B. c-Myc in breast cancer. Endocr. Relat. Cancer 7, 143–164 (2000).

    Article  CAS  Google Scholar 

  12. Pompetti, F. et al. Oncogene alterations in primary, recurrent, and metastatic human bone tumors. J. Cell Biochem. 63, 37–50 (1996).

    Article  CAS  Google Scholar 

  13. Shiu, R. P., Watson, P. H. & Dubik, D. c-myc oncogene expression in estrogen-dependent and -independent breast cancer. Clin. Chem. 39, 353–355 (1993).

    CAS  PubMed  Google Scholar 

  14. D’Cruz, C. M. et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat. Med. 7, 235–239 (2001).

    Article  Google Scholar 

  15. Leder, A., Pattengale, P. K., Kuo, A., Stewart, T. A. & Leder, P. Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 45, 485–495 (1986).

    Article  CAS  Google Scholar 

  16. Sinn, E. et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49, 465–475 (1987).

    Article  CAS  Google Scholar 

  17. Stewart, T. A., Pattengale, P. K. & Leder, P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38, 627–637 (1984).

    Article  CAS  Google Scholar 

  18. Welm, A. L., Kim, S., Welm, B. E. & Bishop, J. M. MET and MYC cooperate in mammary tumorigenesis. Proc. Natl Acad. Sci. USA 102, 4324–4329 (2005).

    Article  CAS  Google Scholar 

  19. Frye, M., Gardner, C., Li, E. R., Arnold, I. & Watt, F. M. Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development 130, 2793–2808 (2003).

    Article  CAS  Google Scholar 

  20. Waikel, R. L., Kawachi, Y., Waikel, P. A., Wang, X. J. & Roop, D. R. Deregulated expression of c-Myc depletes epidermal stem cells. Nat. Genet. 28, 165–168 (2001).

    Article  CAS  Google Scholar 

  21. Guo, W. & Giancotti, F. G. Integrin signalling during tumour progression. Nat. Rev. Mol. Cell Biol. 5, 816–826 (2004).

    Article  CAS  Google Scholar 

  22. Hood, J. D. & Cheresh, D. A. Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2, 91–100 (2002).

    Article  Google Scholar 

  23. Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: A dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    Article  CAS  Google Scholar 

  24. Felding-Habermann, B. Integrin adhesion receptors in tumor metastasis. Clin. Exp. Metastasis 20, 203–213 (2003).

    Article  CAS  Google Scholar 

  25. Mizejewski, G. J. Role of integrins in cancer: survey of expression patterns. Proc. Soc. Exp. Biol. Med. 222, 124–138 (1999).

    Article  CAS  Google Scholar 

  26. Gebhardt, A. et al. Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. J. Cell Biol. 172, 139–149 (2006).

    Article  CAS  Google Scholar 

  27. De Nigris, F. et al. Cooperation between Myc and YY1 provides novel silencing transcriptional targets of α3β1-integrin in tumour cells. Oncogene 26, 382–394 (2007).

    Article  CAS  Google Scholar 

  28. Van Golen, C. M., Soules, M. E., Grauman, A. R. & Feldman, E. L. N-Myc overexpression leads to decreased β1 integrin expression and increased apoptosis in human neuroblastoma cells. Oncogene 22, 2664–2673 (2003).

    Article  CAS  Google Scholar 

  29. Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 18, 2747–2763 (2004).

    Article  CAS  Google Scholar 

  30. Xiao, J., Jethanandani, P., Ziober, B. L. & Kramer, R. H. Regulation of α7 integrin expression during muscle differentiation. J. Biol. Chem. 278, 49780–49788 (2003).

    Article  CAS  Google Scholar 

  31. Husemann, Y. et al. Systemic spread is an early step in breast cancer. Cancer Cell 13, 58–68 (2008).

    Article  Google Scholar 

  32. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  33. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003).

    Article  CAS  Google Scholar 

  34. Carman, C. V. & Springer, T. A. Integrin avidity regulation: are changes in affinity and conformation underemphasized?. Curr. Opin. Cell Biol. 15, 547–556 (2003).

    Article  CAS  Google Scholar 

  35. Bauer, K., Mierke, C. & Behrens, J. Expression profiling reveals genes associated with transendothelial migration of tumor cells: a functional role for αvβ3 integrin. Int. J. Cancer 121, 1910–1918 (2007).

    Article  CAS  Google Scholar 

  36. Wanzel, M., Herold, S. & Eilers, M. Transcriptional repression by Myc. Trends Cell Biol. 13, 146–150 (2003).

    Article  CAS  Google Scholar 

  37. Small, M. B., Hay, N., Schwab, M. & Bishop, J. M. Neoplastic transformation by the human gene N-myc. Mol. Cell Biol. 7, 1638–1645 (1987).

    Article  CAS  Google Scholar 

  38. Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).

    Article  CAS  Google Scholar 

  39. Jamerson, M. H., Johnson, M. D. & Dickson, R. B. Of mice and Myc: c-Myc and mammary tumorigenesis. J. Mammary Gland Biol. Neoplasia 9, 27–37 (2004).

    Article  Google Scholar 

  40. Arvanitis, C. & Felsher, D. W. Conditional transgenic models define how MYC initiates and maintains tumorigenesis. Semin. Cancer Biol. 16, 313–317 (2006).

    Article  CAS  Google Scholar 

  41. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  Google Scholar 

  42. Liu, H., Radisky, D. C. & Bissell, M. J. Proliferation and polarity in breast cancer: untying the Gordian knot. Cell Cycle 4, 646–649 (2005).

    Article  CAS  Google Scholar 

  43. Liu, H., Radisky, D. C., Wang, F. & Bissell, M. J. Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. J. Cell Biol. 164, 603–612 (2004).

    Article  CAS  Google Scholar 

  44. Liu, H. et al. Mechanism of Akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2. Proc. Natl Acad. Sci. USA 103, 4134–4139 (2006).

    Article  CAS  Google Scholar 

  45. Liapis, H., Flath, A. & Kitazawa, S. Integrin αvβ3 expression by bone-residing breast cancer metastases. Diagn. Mol. Pathol. 5, 127–135 (1996).

    Article  CAS  Google Scholar 

  46. Desgrosellier, J. S. et al. An integrin α(v)β(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat. Med. 15, 1163–1169 (2009).

    Article  CAS  Google Scholar 

  47. Ma, L. et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol. 12, 247–256 (2010).

    Article  CAS  Google Scholar 

  48. Rapp, U. R. et al. MYC is a metastasis gene for non-small-cell lung cancer. PLoS One 4, e6029 (2009).

    Article  Google Scholar 

  49. Wolfer, A. et al. MYC regulation of a ‘poor-prognosis’ metastatic cancer cell state. Proc. Natl Acad. Sci. USA 107, 3698–3703 (2010).

    Article  CAS  Google Scholar 

  50. Vita, M. & Henriksson, M. The Myc oncoprotein as a therapeutic target for human cancer. Semin. Cancer Biol. 16, 318–330 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Cheresh, F. G. Giancotti, A. Goga and D. Sheppard for providing DNA constructs and cell lines. We are grateful to C-Y. Chen, L. Prentice and B. Edenfeld for help with histology and imaging. We thank D. Khauv for work with the ChIP assay, E. Miller for work with the orthotopic animal assay, M. Cichon for cloning constructs and M. Stallings-Mann for work with analysis of experiments. We also thank members of the Bishop, Bissell and Radisky laboratories for their constructive discussion and help. This work was financially supported initially by the George Williams Hooper Foundation (J.M.B.). The founder had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Further support came from NIH (P50 CA091956) and the DoD (PC094054) (to E.S.R.); NCI CA122086, Susan B. Komen foundation grant FAS0703855 and the Mayo Clinic Breast Cancer SPORE grant CA116201 (to D.C.R.); the DoD (W81XWH0810736), NIH/NCI (R37CA064786, U01CA143233, U54CA143836 and U54CA126552) and the Department of Energy OBER Low Dose Radiation Program (contract no. DE-AC02-05CH1123) (to M.J.B.).

Author information

Authors and Affiliations

Authors

Contributions

H.L., D.C.R., D.Y., E.S.R., M.J.B. and J.M.B. designed the research; H.L., D.C.R., R.X., E.S.R. and D.Y. performed research; H.L., D.Y., D.C.R., E.S.R., M.J.B. and J.M.B. analysed data; H.L., D.C.R., M.J.B. and J.M.B. wrote the paper.

Corresponding author

Correspondence to Derek C. Radisky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 535 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Radisky, D., Yang, D. et al. MYC suppresses cancer metastasis by direct transcriptional silencing of αv and β3 integrin subunits. Nat Cell Biol 14, 567–574 (2012). https://doi.org/10.1038/ncb2491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2491

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer