Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single-molecule assays reveal that RNA localization signals regulate dynein–dynactin copy number on individual transcript cargoes

Abstract

Subcellular localization of mRNAs by cytoskeletal motors plays critical roles in the spatial control of protein function1. However, optical limitations of studying mRNA transport in vivo mean that there is little mechanistic insight into how transcripts are packaged and linked to motors, and how the movement of mRNA–motor complexes on the cytoskeleton is orchestrated. Here, we have reconstituted transport of mRNPs containing specific RNAs in vitro. We show directly that mRNAs that are either apically localized or non-localized in Drosophila melanogaster embryos associate with the dynein motor and move bidirectionally on individual microtubules, with localizing mRNPs exhibiting a strong minus-end-directed bias. Single-molecule fluorescence measurements reveal that RNA localization signals increase the average number of dynein and dynactin components recruited to individual mRNPs. We find that, surprisingly, individual RNA molecules are present in motile mRNPs in vitro and provide evidence that this is also the case in vivo. Thus, RNA oligomerization is not obligatory for transport. Our findings lead to a model in which RNA localization signals produce highly polarized distributions of transcript populations through modest changes in motor copy number on single mRNA molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An assay for mRNP motility along single microtubules in vitro.
Figure 2: Differential motility of localizing and non-localizing mRNPs along polarity-marked microtubules in vitro.
Figure 3: Localizing mRNPs contain, on average, more copies of dynein and dynactin components than non-localizing mRNPs.
Figure 4: Single copies of mRNA molecules within most localizing mRNPs in vitro.
Figure 5: Single copies of an RNA species within most apically localized mRNPs in vivo.

Similar content being viewed by others

References

  1. Holt, C. E. & Bullock, S. L. Subcellular mRNA localization in animal cells and why it matters. Science 326, 1212–1216 (2009).

    Article  CAS  Google Scholar 

  2. Wilkie, G. S. & Davis, I. Drosophila wingless and pair-rule transcripts localize apically by dynein-mediated transport of RNA particles. Cell 105, 209–219 (2001).

    Article  CAS  Google Scholar 

  3. Welte, M. A., Gross, S. P., Postner, M., Block, S. M. & Wieschaus, E. F. Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92, 547–557 (1998).

    Article  CAS  Google Scholar 

  4. Dienstbier, M., Boehl, F., Li, X. & Bullock, S. L. Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor. Genes Dev. 23, 1546–1558 (2009).

    Article  CAS  Google Scholar 

  5. Navarro, C., Puthalakath, H., Adams, J. M., Strasser, A. & Lehmann, R. Egalitarian binds dynein light chain to establish oocyte polarity and maintain oocyte fate. Nat. Cell Biol. 6, 427–435 (2004).

    Article  CAS  Google Scholar 

  6. Bullock, S. L. & Ish-Horowicz, D. Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis. Nature 414, 611–616 (2001).

    Article  CAS  Google Scholar 

  7. Hoogenraad, C. C. et al. Mammalian Golgi-associated Bicaudal-D2 functions in the dynein–dynactin pathway by interacting with these complexes. EMBO J. 20, 4041–4054 (2001).

    Article  CAS  Google Scholar 

  8. Bullock, S. L., Nicol, A., Gross, S. P. & Zicha, D. Guidance of bidirectional motor complexes by mRNA cargoes through control of dynein number and activity. Curr. Biol. 16, 1447–1452 (2006).

    Article  CAS  Google Scholar 

  9. Vendra, G., Hamilton, R. S. & Davis, I. Dynactin suppresses the retrograde movement of apically localized mRNA in Drosophila blastoderm embryos. RNA 13, 1860–1867 (2007).

    Article  CAS  Google Scholar 

  10. Serano, T. L. & Cohen, R. S. A small predicted stem-loop structure mediates oocyte localization of Drosophila K10 mRNA. Development 121, 3809–3818 (1995).

    CAS  PubMed  Google Scholar 

  11. Bullock, S. L., Ringel, I., Ish-Horowicz, D. & Lukavsky, P. J. A’-form RNA helices are required for cytoplasmic mRNA transport in Drosophila. Nat. Struct. Mol. Biol. 17, 703–709 (2010).

    Article  CAS  Google Scholar 

  12. Ingham, P. W., Howard, K. R. & Ish-Horowicz, D. Transcriptional pattern of the Drosophila segmentation gene hairy. Nature 318, 439–445 (1985).

    Article  CAS  Google Scholar 

  13. Fusco, D. et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13, 161–167 (2003).

    Article  CAS  Google Scholar 

  14. Larsen, K. S., Xu, J., Cermelli, S., Shu, Z. & Gross, S. P. BicaudalD actively regulates microtubule motor activity in lipid droplet transport. PLoS One 3, e3763 (2008).

    Article  Google Scholar 

  15. Shubeita, G. T. et al. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 135, 1098–1107 (2008).

    Article  CAS  Google Scholar 

  16. Vale, R. D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996).

    Article  CAS  Google Scholar 

  17. Ross, J. L., Wallace, K., Shuman, H., Goldman, Y. E. & Holzbaur, E. L. Processive bidirectional motion of dynein–dynactin complexes in vitro. Nat. Cell Biol. 8, 562–570 (2006).

    Article  CAS  Google Scholar 

  18. Shu, D., Zhang, H., Jin, J. & Guo, P. Counting of six pRNAs of phi29 DNA-packaging motor with customized single-molecule dual-view system. EMBO J. 26, 527–537 (2007).

    Article  CAS  Google Scholar 

  19. Kardon, J. R., Reck-Peterson, S. L. & Vale, R. D. Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin. Proc. Natl Acad. Sci. USA 106, 5669–5674 (2009).

    Article  CAS  Google Scholar 

  20. Schuster, M., Lipowsky, R., Assmann, M. A., Lenz, P. & Steinberg, G. Transient binding of dynein controls bidirectional long-range motility of early endosomes. Proc. Natl. Acad. Sci. USA 108, 3618–3623 (2011).

    Article  CAS  Google Scholar 

  21. Coy, D. L., Hancock, W. O., Wagenbach, M. & Howard, J. Kinesin’s tail domain is an inhibitory regulator of the motor domain. Nat. Cell Biol. 1, 288–292 (1999).

    Article  CAS  Google Scholar 

  22. Mallik, R., Petrov, D., Lex, S. A., King, S. J. & Gross, S. P. Building complexity: an in vitro study of cytoplasmic Dynein with in vivo implications. Curr. Biol. 15, 2075–2085 (2005).

    Article  CAS  Google Scholar 

  23. Kiebler, M. A. & Bassell, G. J. Neuronal RNA granules: movers and makers. Neuron 51, 685–690 (2006).

    Article  CAS  Google Scholar 

  24. Mhlanga, M. M. et al. In vivo colocalisation of oskar mRNA and trans-acting proteins revealed by quantitative imaging of the Drosophila oocyte. PLoS One 4, e6241 (2009).

    Article  Google Scholar 

  25. Delanoue, R., Herpers, B., Soetaert, J., Davis, I. & Rabouille, C. Drosophila Squid/hnRNP helps Dynein switch from a gurken mRNA transport motor to an ultrastructural static anchor in sponge bodies. Dev. Cell. 13, 523–538 (2007).

    Article  CAS  Google Scholar 

  26. Lange, S. et al. Simultaneous transport of different localized mRNA species revealed by live-cell imaging. Traffic 9, 1256–1267 (2008).

    Article  CAS  Google Scholar 

  27. Ferrandon, D., Koch, I., Westhof, E. & Nusslein-Volhard, C. RNA–RNA interaction is required for the formation of specific bicoid mRNA 3′ UTR-STAUFEN ribonucleoprotein particles. EMBO J. 16, 1751–1758 (1997).

    Article  CAS  Google Scholar 

  28. Paré, A. et al. Visualization of individual Scr mRNAs during Drosophila embryogenesis yields evidence for transcriptional bursting. Curr. Biol. 19, 2037–2042 (2009).

    Article  Google Scholar 

  29. Wilkie, G. S., Shermoen, A. W., O’Farrell, P. H. & Davis, I. Transcribed genes are localized according to chromosomal position within polarized Drosophila embryonic nuclei. Curr. Biol. 9, 1263–1266 (1999).

    Article  CAS  Google Scholar 

  30. Nasiadka, A., Dietrich, B. H. & Krause, H. M. Anterior–posterior patterning in the Drosophila embryo. Adv. Dev. Biol. Biochem. 12, 155–204 (2002).

    Article  CAS  Google Scholar 

  31. Mikl, M., Vendra, G. & Kiebler, M. A. Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers. EMBO Rep. 12, 1077–1084 (2011).

    Article  CAS  Google Scholar 

  32. Zimyanin, V. L. et al. In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134, 843–853 (2008).

    Article  CAS  Google Scholar 

  33. Kerssemakers, J. W. et al. Assembly dynamics of microtubules at molecular resolution. Nature 442, 709–712 (2006).

    Article  CAS  Google Scholar 

  34. Loiseau, P., Davies, T., Williams, L. S., Mishima, M. & Palacios, I. M. Drosophila PAT1 is required for Kinesin-1 to transport cargo and to maximize its motility. Development 137, 2763–2772 (2010).

    Article  CAS  Google Scholar 

  35. Pandey, R., Heeger, S. & Lehner, C. F. Rapid effects of acute anoxia on spindle kinetochore interactions activate the mitotic spindle checkpoint. J. Cell Sci. 120, 2807–2818 (2007).

    Article  CAS  Google Scholar 

  36. Januschke, J. et al. Polar transport in the Drosophila oocyte requires Dynein and Kinesin I cooperation. Curr. Biol. 12, 1971–1981 (2002).

    Article  CAS  Google Scholar 

  37. Cole, K., Truong, V., Barone, D. & McGall, G. Direct labeling of RNA with multiple biotins allows sensitive expression profiling of acute leukemia class predictor genes. Nucleic Acids Res. 32, e86 (2004).

    Article  Google Scholar 

  38. Ross, J. L., Shuman, H., Holzbaur, E. L. & Goldman, Y. E. Kinesin and dynein–dynactin at intersecting microtubules: motor density affects dynein function. Biophys. J. 94, 3115–3125 (2008).

    Article  CAS  Google Scholar 

  39. Duncan, J. E. & Warrior, R. The cytoplasmic dynein and kinesin motors have interdependent roles in patterning the Drosophila oocyte. Curr. Biol. 12, 1982–1991 (2002).

    Article  CAS  Google Scholar 

  40. Mische, S. et al. Dynein light intermediate chain: an essential subunit that contributes to spindle checkpoint inactivation. Mol. Biol. Cell 19, 4918–4929 (2008).

    Article  CAS  Google Scholar 

  41. Mach, J. M. & Lehmann, R. An Egalitarian-BicaudalD complex is essential for oocyte specification and axis determination in Drosophila. Genes Dev. 11, 423–435 (1997).

    Article  CAS  Google Scholar 

  42. Suter, B. & Steward, R. Requirement for phosphorylation and localizationof the Bicaudal-D protein in Drosophila oocyte differentiation. Cell 67, 917–926 (1991).

    Article  CAS  Google Scholar 

  43. Sharp, D. J. et al. Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 11, 241–253 (2000).

    Article  CAS  Google Scholar 

  44. Lecuyer, E., Parthasarathy, N. & Krause, H. M. Fluorescent in situ hybridization protocols in Drosophila embryos and tissues. Methods Mol. Biol. 420, 289–302 (2008).

    Article  CAS  Google Scholar 

  45. Roth, P. et al. The Drosophila nucleoporin DNup88 localizes DNup214 and CRM1 on the nuclear envelope and attenuates NES-mediated nuclear export. J. Cell Biol. 163, 701–706 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the UK Medical Research Council (project U105178790) and a Lister Institute prize fellowship (to S.L.B.). We are very grateful to A. Carter, A. Guichet, T. Hays, R. Lehmann, E. Miska, C. Navarro, I. Palacios, J. Raff, C. Samakovlis, B. Suter and R. Warrior for providing reagents, A. Paré for advice on in situ hybridization, N. Barry for advice on microscopy, A. Nicol and D. Zicha for help with mRNP tracking software, M. Dogterom for the Stepfinder algorithm, and members of the Bullock laboratory, D. St Johnston and A. Carter for their valuable insights.

Author information

Authors and Affiliations

Authors

Contributions

M.A-N. and S.L.B. conceived the project. M.A-N. developed the in vitro assays, carried out all in vitro experiments and analysed the data. S.L.B. carried out the embryo injections and in situ hybridizations and analysed the data. M.A-N. and S.L.B. interpreted the data. S.L.B. and M.A-N. wrote and edited the manuscript, respectively.

Corresponding author

Correspondence to Simon L. Bullock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 585 kb)

Supplementary Movie 1

Supplementary Information (AVI 450 kb)

Supplementary Movie 2

Supplementary Information (AVI 357 kb)

Supplementary Movie 3

Supplementary Information (AVI 158 kb)

Supplementary Movie 4

Supplementary Information (AVI 166 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amrute-Nayak, M., Bullock, S. Single-molecule assays reveal that RNA localization signals regulate dynein–dynactin copy number on individual transcript cargoes. Nat Cell Biol 14, 416–423 (2012). https://doi.org/10.1038/ncb2446

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2446

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing