Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA-damage response and repair activities at uncapped telomeres depend on RNF8

Abstract

Loss of telomere protection causes natural chromosome ends to become recognized by DNA-damage response and repair proteins. These events result in ligation of chromosome ends with dysfunctional telomeres, thereby causing chromosomal aberrations on cell division. The control of these potentially dangerous events at deprotected chromosome ends with their unique telomeric chromatin configuration is poorly understood. In particular, it is unknown to what extent bulky modification of telomeric chromatin is involved. Here we show that uncapped telomeres accumulate ubiquitylated histone H2A in a manner dependent on the E3 ligase RNF8. The ability of RNF8 to ubiquitylate telomeric chromatin is associated with its capacity to facilitate accumulation of both 53BP1 and phospho-ATM at uncapped telomeres and to promote non-homologous end-joining of deprotected chromosome ends. In line with the detrimental effect of RNF8 on uncapped telomeres, depletion of RNF8, as well as of the E3 ligase RNF168, reduces telomere-induced genome instability. This indicates that, besides suppressing tumorigenesis by mediating repair of DNA double-strand breaks, RNF8 and RNF168 might enhance cancer development by aggravating telomere-induced genome instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNF8 contributes to telomere-induced genome instability.
Figure 2: RNF8 facilitates telomeric G-overhang degradation and telomere fusion.
Figure 3: Impaired 53BP1 and p-ATM accumulation at uncapped telomeres on knockdown of Rnf8.
Figure 4: Telomere uncapping induces ubiquitylation of H2A and H2AX in an RNF8-dependent manner.
Figure 5: 53BP1, p-ATM and Ub–H2A accumulation at uncapped telomeres and telomere-induced genome instability depend on the RNF8 FHA and E3-ligase domains.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  2. Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42, 301–334 (2008).

    Article  CAS  Google Scholar 

  3. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  Google Scholar 

  4. van Attikum, H., Fritsch, O., Hohn, B. & Gasser, S. M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119, 777–788 (2004).

    Article  CAS  Google Scholar 

  5. Tsukuda, T., Fleming, A. B., Nickoloff, J. A. & Osley, M. A. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438, 379–383 (2005).

    Article  CAS  Google Scholar 

  6. Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172, 823–834 (2006).

    Article  CAS  Google Scholar 

  7. Berkovich, E., Monnat, R. J. Jr & Kastan, M. B. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat. Cell Biol. 9, 683–690 (2007).

    Article  CAS  Google Scholar 

  8. Polo, S. E. & Jackson, S. P. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 25, 409–433 (2011).

    Article  CAS  Google Scholar 

  9. Benetti, R., Garcia-Cao, M. & Blasco, M. A. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat. Genet. 39, 243–250 (2007).

    Article  CAS  Google Scholar 

  10. Lejnine, S., Makarov, V. L. & Langmore, J. P. Conserved nucleoprotein structure at the ends of vertebrate and invertebrate chromosomes. Proc. Natl Acad. Sci. USA 92, 2393–2397 (1995).

    Article  CAS  Google Scholar 

  11. Makarov, V. L., Lejnine, S., Bedoyan, J. & Langmore, J. P. Nucleosomal organization of telomere-specific chromatin in rat. Cell 73, 775–787 (1993).

    Article  CAS  Google Scholar 

  12. Tommerup, H., Dousmanis, A. & de Lange, T. Unusual chromatin in human telomeres. Mol. Cell Biol. 14, 5777–5785 (1994).

    Article  CAS  Google Scholar 

  13. Pisano, S. et al. Telomeric nucleosomes are intrinsically mobile. J. Mol. Biol. 369, 1153–1162 (2007).

    Article  CAS  Google Scholar 

  14. Giraud-Panis, M. J., Pisano, S., Poulet, A., Le Du, M. H. & Gilson, E. Structural identity of telomeric complexes. FEBS Lett. 584, 3785–3799 (2010).

    Article  CAS  Google Scholar 

  15. Wu, P. & de Lange, T. No overt nucleosome eviction at deprotected telomeres. Mol. Cell Biol. 28, 5724–5735 (2008).

    Article  CAS  Google Scholar 

  16. Panier, S. & Durocher, D. Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair (Amst) 8, 436–443 (2009).

    Article  CAS  Google Scholar 

  17. Konishi, A. & de Lange, T. Cell cycle control of telomere protection and NHEJ revealed by a ts mutation in the DNA-binding domain of TRF2. Genes Dev. 22, 1221–1230 (2008).

    Article  CAS  Google Scholar 

  18. Smogorzewska, A., Karlseder, J., Holtgreve-Grez, H., Jauch, A. & de Lange, T. DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr. Biol. 12, 1635–1644 (2002).

    Article  CAS  Google Scholar 

  19. Celli, G. B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol. 7, 712–718 (2005).

    Article  CAS  Google Scholar 

  20. Celli, G. B., Denchi, E. L. & de Lange, T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat. Cell Biol. 8, 885–890 (2006).

    Article  Google Scholar 

  21. Dimitrova, N. & de Lange, T. MDC1 accelerates nonhomologous end-joining of dysfunctional telomeres. Genes Dev. 20, 3238–3243 (2006).

    Article  CAS  Google Scholar 

  22. Denchi, E. L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007).

    Article  CAS  Google Scholar 

  23. Dimitrova, N., Chen, Y. C., Spector, D. L. & de Lange, T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456, 524–528 (2008).

    Article  CAS  Google Scholar 

  24. Dimitrova, N. & de Lange, T. Cell cycle-dependent role of MRN at dysfunctional telomeres: ATM signaling-dependent induction of nonhomologous end joining (NHEJ) in G1 and resection-mediated inhibition of NHEJ in G2. Mol. Cell Biol. 29, 5552–5563 (2009).

    Article  CAS  Google Scholar 

  25. Deng, Y., Guo, X., Ferguson, D. O. & Chang, S. Multiple roles for MRE11 at uncapped telomeres. Nature 460, 914–918 (2009).

    Article  CAS  Google Scholar 

  26. Huen, M. S. et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131, 901–914 (2007).

    Article  CAS  Google Scholar 

  27. Kolas, N. K. et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318, 1637–1640 (2007).

    Article  CAS  Google Scholar 

  28. Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131, 887–900 (2007).

    Article  CAS  Google Scholar 

  29. Wang, B. & Elledge, S. J. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc. Natl Acad. Sci. USA 104, 20759–20763 (2007).

    Article  CAS  Google Scholar 

  30. Doil, C. et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136, 435–446 (2009).

    Article  CAS  Google Scholar 

  31. Stewart, G. S. et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136, 420–434 (2009).

    Article  CAS  Google Scholar 

  32. Goodarzi, A. A. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31, 167–177 (2008).

    Article  CAS  Google Scholar 

  33. Moyal, L. et al. Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol. Cell 41, 529–542 (2011).

    Article  CAS  Google Scholar 

  34. Nakamura, K. et al. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol. Cell 41, 515–528 (2011).

    Article  CAS  Google Scholar 

  35. Fierz, B. et al. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat. Chem. Biol. 7, 113–119 (2011).

    Article  CAS  Google Scholar 

  36. Santos, M. A. et al. Class switching and meiotic defects in mice lacking the E3 ubiquitin ligase RNF8. J. Exp. Med. 207, 973–981 (2010).

    Article  CAS  Google Scholar 

  37. Li, L. et al. Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. J. Exp. Med. 207, 983–997 (2010).

    Article  CAS  Google Scholar 

  38. Guo, X. et al. Dysfunctional telomeres activate an ATM–ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J. 26, 4709–4719 (2007).

    Article  CAS  Google Scholar 

  39. Ye, J. Z. & de Lange, T. TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nat. Genet. 36, 618–623 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Konishi, G. Celli and T. de Lange for the Trf2ts allele, Trf2flox/−; p53−/− MEFs and Trf2flox/−; p53−/−; Lig4−/− MEFs, J. van der Torre and K. Beekhuis for help with generating and testing Trf2−/−; p53−/−;TRF2ts clones, J. van Noord for technical assistance at the beginning of this project, S. Burkhard for help with RNF168 qRT–PCR, D. Silver and D. Livingston for the HR-Cre plasmid, F. Mattiroli for pCDNA-HA-RNF8, S. Kabir (de Lange laboratory) for technical advice on IF-FISH and FISH and L. Oomen and L. Brocks of the NKI digital microscope facility for help with confocal microscope imaging. We also thank J. van der Torre and S. Burkhard for sharing unpublished results on the identification of RNF8 shRNAs in a genome-wide shRNA library screen in TRF2ts cells and E. Citterio and A. Berns for critically reading this manuscript. This work was supported by grants NKI 2005-3458 and NKI 2007-3907 from the Dutch Cancer Society to J.J.L.J.

Author information

Authors and Affiliations

Authors

Contributions

M.H.P. and J.J.L.J. designed the experiments. M.H.P. carried out most experimental work. J.J.L.J. supervised the project, helped generate Trf2−/−; p53−/−;TRF2ts clones and carried out all molecular cloning involved and experiments represented in Fig. 3d and Supplementary Fig. S4. J.J.L.J. wrote the manuscript.

Corresponding author

Correspondence to Jacqueline J. L. Jacobs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peuscher, M., Jacobs, J. DNA-damage response and repair activities at uncapped telomeres depend on RNF8. Nat Cell Biol 13, 1139–1145 (2011). https://doi.org/10.1038/ncb2326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2326

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing