Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes

Abstract

Mature mammalian oocytes are poised for completing meiosis II (MII) on fertilization by positioning the spindle close to an actomyosin-rich cortical cap1,2,3. Here, we show that the Arp2/3 complex localizes to the cortical cap in a Ran-GTPase-dependent manner and nucleates actin filaments in the cortical cap and a cytoplasmic actin network. Inhibition of Arp2/3 activity leads to rapid dissociation of the spindle from the cortex. Live-cell imaging and spatiotemporal image correlation spectroscopy analysis reveal that actin filaments flow continuously away from the Arp2/3-rich cortex, driving a cytoplasmic streaming expected to exert a net pushing force on the spindle towards the cortex. Arp2/3 inhibition not only diminishes this actin flow and cytoplasmic streaming but also enables a reverse streaming driven by myosin-II-based cortical contraction, moving the spindle away from the cortex. Thus, the asymmetric MII spindle position is dynamically maintained as a result of balanced forces governed by the Arp2/3 complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of Arp2/3-complex activity disrupts asymmetric MII spindle position.
Figure 2: Ran signalling regulates cortical localization of the Arp2/3 complex.
Figure 3: The Arp2/3 complex is required for most F-actin assembly in the cortical cap and for myosin-II ring maintenance.
Figure 4: Cytoplasmic streaming powered by Arp2/3-complex-dependent actin flow generates a net pushing force on the spindle.
Figure 5: Myosin-II-dependent cortical cap contraction drives the MII spindle away from the cortex in the absence of Arp2/3 activity.

Similar content being viewed by others

References

  1. Sathananthan, A. H. Ultrastructure of the human egg. Hum. Cell 10, 21–38 (1997).

    PubMed  CAS  Google Scholar 

  2. Webb, M., Howlett, S. K. & Maro, B. Parthenogenesis and cytoskeletal organization in ageing mouse eggs. J. Embryol. Exp. Morphol. 95, 131–145 (1986).

    PubMed  CAS  Google Scholar 

  3. Kim, N. H., Moon, S. J., Prather, R. S. & Day, B. N. Cytoskeletal alteration in aged porcine oocytes and parthenogenesis. Mol. Reprod. Dev. 43, 513–518 (1996).

    Article  CAS  Google Scholar 

  4. Maro, B., Johnson, M. H., Webb, M. & Flach, G. Mechanism of polar body formation in the mouse oocyte: an interaction between the chromosomes, the cytoskeleton and the plasma membrane. J. Embryol. Exp. Morphol. 92, 11–32 (1986).

    PubMed  CAS  Google Scholar 

  5. Longo, F. J. & Chen, D. Y. Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev. Biol. 107, 382–394 (1985).

    Article  CAS  Google Scholar 

  6. Verlhac, M. H., Lefebvre, C., Guillaud, P., Rassinier, P. & Maro, B. Asymmetric division in mouse oocytes: with or without Mos. Curr. Biol. 10, 1303–1306 (2000).

    Article  CAS  Google Scholar 

  7. Leader, B. et al. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat. Cell Biol. 4, 921–928 (2002).

    Article  CAS  Google Scholar 

  8. Deng, M., Suraneni, P., Schultz, R. M. & Li, R. The Ran GTPase mediates chromatin signaling to control cortical polarity during polar body extrusion in mouse oocytes. Dev. Cell 12, 301–308 (2007).

    Article  CAS  Google Scholar 

  9. Deng, M. & Li, R. Sperm chromatin-induced ectopic polar body extrusion in mouse eggs after ICSI and delayed egg activation. PLoS One 4, e7171 (2009).

    Article  CAS  Google Scholar 

  10. Brunet, S. & Maro, B. Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space. Reproduction 130, 801–811 (2005).

    Article  CAS  Google Scholar 

  11. Siller, K. H. & Doe, C. Q. Spindle orientation during asymmetric cell division. Nat. Cell Biol. 11, 365–374 (2009).

    Article  CAS  Google Scholar 

  12. Zhu, Z. Y. et al. Rotation of meiotic spindle is controlled by microfilaments in mouse oocytes. Biol. Reprod. 68, 943–946 (2003).

    Article  CAS  Google Scholar 

  13. Halet, G. & Carroll, J. Rac activity is polarized and regulates meiotic spindle stability and anchoring in mammalian oocytes. Dev. Cell 12, 309–317 (2007).

    Article  CAS  Google Scholar 

  14. Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137, 399–416 (1997).

    Article  CAS  Google Scholar 

  15. Straight, A. F. et al. Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299, 1743–1747 (2003).

    Article  CAS  Google Scholar 

  16. Nolen, B. J. et al. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature 460, 1031–1034 (2009).

    Article  CAS  Google Scholar 

  17. Goley, E. D. & Welch, M. D. The ARP2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol. 7, 713–726 (2006).

    Article  CAS  Google Scholar 

  18. Campellone, K. G. & Welch, M. D. A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11, 237–251 (2010).

    Article  CAS  Google Scholar 

  19. Padrick, S. B. et al. Hierarchical regulation of WASP/WAVE proteins. Mol. Cell 32, 426–438 (2008).

    Article  CAS  Google Scholar 

  20. Higgs, H. N., Blanchoin, L. & Pollard, T. D. Influence of the C terminus of Wiskott–Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization. Biochemistry 38, 15212–15222 (1999).

    Article  CAS  Google Scholar 

  21. Wilde, A. et al. stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat. Cell Biol. 3, 221–227 (2001).

    Article  CAS  Google Scholar 

  22. Li, H., Guo, F., Rubinstein, B. & Li, R. Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes. Nat. Cell Biol. 10, 1301–1308 (2008).

    Article  CAS  Google Scholar 

  23. Schuh, M. & Ellenberg, J. A new model for asymmetric spindle positioning in mouse oocytes. Curr. Biol. 18, 1986–1992 (2008).

    Article  CAS  Google Scholar 

  24. Azoury, J. et al. Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr. Biol. 18, 1514–1519 (2008).

    Article  CAS  Google Scholar 

  25. Burkel, B. M., von Dassow, G. & Bement, W. M. Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil. Cytoskeleton 64, 822–832 (2007).

    Article  CAS  Google Scholar 

  26. Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605–607 (2008).

    Article  CAS  Google Scholar 

  27. Hebert, B., Costantino, S. & Wiseman, P. W. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys. J. 88, 3601–3614 (2005).

    Article  CAS  Google Scholar 

  28. Cramer, L. P. Molecular mechanism of actin-dependent retrograde flow in lamellipodia of motile cells. Front. Biosci. 2, d260–d270 (1997).

    Article  CAS  Google Scholar 

  29. Bubb, M. R., Senderowicz, A. M., Sausville, E. A., Duncan, K. L. & Korn, E. D. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J. Biol. Chem. 269, 14869–14871 (1994).

    PubMed  CAS  Google Scholar 

  30. Chen, H., Bernstein, B. W. & Bamburg, J. R. Regulating actin-filament dynamics in vivo. Trends Biochem. Sci. 25, 19–23 (2000).

    Article  CAS  Google Scholar 

  31. Keren, K., Yam, P. T., Kinkhabwala, A., Mogilner, A. & Theriot, J. A. Intracellular fluid flow in rapidly moving cells. Nat. Cell Biol. 11, 1219–1224 (2009).

    Article  CAS  Google Scholar 

  32. Miao, Y. L., Kikuchi, K., Sun, Q. Y. & Schatten, H. Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum. Reprod. Update 15, 573–585 (2009).

    Article  Google Scholar 

  33. Cohen, Y. et al. Spindle imaging: a new marker for optimal timing of ICSI? Hum. Reprod. 19, 649–654 (2004).

    Article  CAS  Google Scholar 

  34. Moon, J. H. et al. Visualization of the metaphase II meiotic spindle in living human oocytes using the Polscope enables the prediction of embryonic developmental competence after ICSI. Hum. Reprod. 18, 817–820 (2003).

    Article  CAS  Google Scholar 

  35. Zamir, E. A., Czirok, A., Rongish, B. J. & Little, C. D. A digital image-based method for computational tissue fate mapping during early avian morphogenesis. Ann. Biomed. Eng. 33, 854–865 (2005).

    Article  Google Scholar 

  36. Ponti, A., Vallotton, P., Salmon, W. C., Waterman-Storer, C. M. & Danuser, G. Computational analysis of F-actin turnover in cortical actin meshworks using fluorescent speckle microscopy. Biophys. J. 84, 3336–3352 (2003).

    Article  CAS  Google Scholar 

  37. Pudasaini, S. P., Hsiau, S-S., Wang, Y. & Hutter, K. Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions. Phys. Fluids 17, 093301 (2005).

    Article  CAS  Google Scholar 

  38. Lueptow, R. M., Akonur, A. & Shinbrot, T. PIV for granular flows. Exp. Fluids 183–186 (1998).

  39. Rossow, M., Mantulin, W. W. & Gratton, E. Spatiotemporal image correlation spectroscopy measurements of flow demonstrated in microfluidic channels. J. Biomed. Opt. 14, 024014 (2009).

    Article  Google Scholar 

  40. Rossow, M. J., Mantulin, W. W. & Gratton, E. Scanning laser image correlation for measurement of flow. J. Biomed. Opt. 15, 026003 (2010).

    Article  Google Scholar 

  41. Sbalzarini, I. F. & Koumoutsakos, P. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182–195 (2005).

    Article  CAS  Google Scholar 

  42. Landau, L. D. & Lifshitz, E. M. Course of Theoretical Physics Vol. 6 (Pergamon, 1987).

    Google Scholar 

Download references

Acknowledgements

We thank W. M. Bement (University of Wisconsin, USA) for providing pCS2+–UtrCH–GFP plasmid; J. Bamburg (Colorado State University, USA) for providing anti-cofilin and phos-cofilin antibodies; H. Cartwright (Stowers Institute, USA) for microfabricated wells for oocyte imaging; and M. Durnin and K. Westfahl (both Stowers Institute, USA) for technical assistance and mice maintenance. This work was supported in part by NIH grant P01 GM 066311.

Author information

Authors and Affiliations

Authors

Contributions

K.Y. and R.L. designed the experiments, interpreted results and prepared the manuscript; K.Y. carried out all of the experiments; J.R.U. carried out STICS analysis with assistance from B.D.S. and also contributed to other image analysis; M.D. assisted in the initial experimental set-up. B.R. carried out the numerical simulations; R.L. conceived and supervised the project.

Corresponding author

Correspondence to Rong Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2009 kb)

Supplementary Movie 1

Supplementary Information (MOV 190 kb)

Supplementary Movie 2

Supplementary Information (MOV 281 kb)

Supplementary Movie 3

Supplementary Information (MOV 3753 kb)

Supplementary Movie 4

Supplementary Information (MOV 1843 kb)

Supplementary Movie 5

Supplementary Information (MOV 796 kb)

Supplementary Movie 6

Supplementary Information (MOV 939 kb)

Supplementary Movie 7

Supplementary Information (MOV 2186 kb)

Supplementary Movie 8

Supplementary Information (MOV 1024 kb)

Supplementary Movie 9

Supplementary Information (MOV 2525 kb)

Supplementary Movie 10

Supplementary Information (MOV 1239 kb)

Supplementary Movie 11

Supplementary Information (MOV 3019 kb)

Supplementary Movie 12

Supplementary Information (MOV 1291 kb)

Supplementary Movie 13

Supplementary Information (MOV 1724 kb)

Supplementary Movie 14

Supplementary Information (MOV 834 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, K., Unruh, J., Deng, M. et al. Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat Cell Biol 13, 1252–1258 (2011). https://doi.org/10.1038/ncb2320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing