Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells

This article has been updated

Abstract

Pluripotent stem cells exist in naive and primed states, epitomized by mouse embryonic stem cells (ESCs) and the developmentally more advanced epiblast stem cells (EpiSCs; ref. 1). In the naive state of ESCs, the genome has an unusual open conformation and possesses a minimum of repressive epigenetic marks2. In contrast, EpiSCs have activated the epigenetic machinery that supports differentiation towards the embryonic cell types3,4,5,6. The transition from naive to primed pluripotency therefore represents a pivotal event in cellular differentiation. But the signals that control this fundamental differentiation step remain unclear. We show here that paracrine and autocrine Wnt signals are essential self-renewal factors for ESCs, and are required to inhibit their differentiation into EpiSCs. Moreover, we find that Wnt proteins in combination with the cytokine LIF are sufficient to support ESC self-renewal in the absence of any undefined factors, and support the derivation of new ESC lines, including ones from non-permissive mouse strains. Our results not only demonstrate that Wnt signals regulate the naive-to-primed pluripotency transition, but also identify Wnt as an essential and limiting ESC self-renewal factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ESC self-renewal requires Wnt signals.
Figure 2: Wnt signals are required to inhibit the differentiation of ESCs into EpiSCs.
Figure 3: Wnt3a protein is sufficient to inhibit the differentiation of ESCs into EpiSCs.
Figure 4: LIF and Wnt3a are sufficient to support ESC self-renewal.
Figure 5: Wnt3a supports derivation of non-permissive ESCs.

Similar content being viewed by others

Change history

  • 07 October 2011

    In the version of this article initially published online, the sequences of the primers used for Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a and Wnt5b listed in supplementary table 5 were incorrect.

References

  1. Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Niwa, H. Open conformation chromatin and pluripotency. Genes Dev. 21, 2671–2676 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Hayashi, K., Lopes, S. M., Tang, F. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Guo, G. et al. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136, 1063–1069 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. ten Berge, D. et al. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3, 508–518 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, B. et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5, 100–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lustig, B. et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell Biol. 22, 1184–1193 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anton, R., Kestler, H. A. & Kuhl, M. β-catenin signaling contributes to stemness and regulates early differentiation in murine embryonic stem cells. FEBS Lett. 581, 5247–5254 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Kemp, C., Willems, E., Abdo, S., Lambiv, L. & Leyns, L. Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and postimplantation development. Dev. Dyn. 233, 1064–1075 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Q. T. et al. A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell 6, 133–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Haegel, H. et al. Lack of β-catenin affects mouse development at gastrulation. Development 121, 3529–3537 (1995).

    CAS  PubMed  Google Scholar 

  15. Ohsugi, M. et al. Expression and cell membrane localization of catenins during mouse preimplantation development. Dev. Dyn. 206, 391–402 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. De Vries, W. N. et al. Maternal β-catenin and E-cadherin in mouse development. Development 131, 4435–4445 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Nichols, J., Chambers, I., Taga, T. & Smith, A. Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development 128, 2333–2339 (2001).

    CAS  PubMed  Google Scholar 

  18. Stambolic, V., Ruel, L. & Woodgett, J. R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 6, 1664–1668 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Doble, B. W. & Woodgett, J. R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175–1186 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Tighe, A., Ray-Sinha, A., Staples, O. D. & Taylor, S. S. GSK-3 inhibitors induce chromosome instability. BMC Cell Biol. 8, 34 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Acevedo, N., Wang, X., Dunn, R. L. & Smith, G. D. Glycogen synthase kinase-3 regulation of chromatin segregation and cytokinesis in mouse preimplantation embryos. Mol. Reprod. Dev. 74, 178–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kelly, K.F. et al. β-catenin enhances Oct-4 activity and reinforces pluripotency through a TCF-independent mechanism. Cell Stem Cell 8, 214–227 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nichols, J., Silva, J., Roode, M. & Smith, A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136, 3215–3222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gardner, R. L. & Brook, F. A. Reflections on the biology of embryonic stem (ES) cells. Int. J. Dev. Biol. 41, 235–243 (1997).

    CAS  PubMed  Google Scholar 

  26. Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H. & Young, R. A. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 22, 746–755 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tam, W. L. et al. T-cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways. Stem Cells 26, 2019–2031 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yi, F., Pereira, L. & Merrill, B. J. Tcf3 functions as a steady-state limiter of transcriptional programs of mouse embryonic stem cell self-renewal. Stem Cells 26, 1951–1960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kielman, M. F. et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signaling. Nat. Genet. 32, 594–605 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Hao, J., Li, T. G., Qi, X., Zhao, D. F. & Zhao, G. Q. WNT/β-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Dev. Biol. 290, 81–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa, K., Nishinakamura, R., Iwamatsu, Y., Shimosato, D. & Niwa, H. Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem. Biophys. Res. Commun. 343, 159–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Singla, D. K., Schneider, D. J., LeWinter, M. M. & Sobel, B. E. wnt3a but not wnt11 supports self-renewal of embryonic stem cells. Biochem. Biophys. Res. Commun. 345, 789–795 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Williams, R. L. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Smith, A. G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Hanna, J. et al. Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4, 513–524 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Hsieh, J. C., Rattner, A., Smallwood, P. M. & Nathans, J. Biochemical characterization of Wnt–frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl Acad. Sci. USA 96, 3546–3551 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Mikels, A. J. & Nusse, R. Purified Wnt5a protein activates or inhibits β-catenin–TCF signaling depending on receptor context. PLoS Biol 4, e115 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ying, Q. L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Lamprecht, M. R., Sabatini, D. M. & Carpenter, A. E. CellProfiler: free, versatile software for automated biological image analysis. Biotechniques 42, 71–75 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by the Howard Hughes Medical Institute, the Erasmus MC Stem Cell Institute and grants from the California Institute of Regenerative Medicine (RC1-00133-1), the National Institutes of Health (DK67834-01) and the European Union (FP7-PEOPLE-2009-RG-256560). We thank H. Zeng for technical advice, J. Kong-A-San for assistance with blastocyst injections and R. van der Linden for assistance with FACS. We are grateful for the use of the Cellavista imager and the assistance of V. Vincent and Roche Diagnostics.

Author information

Authors and Affiliations

Authors

Contributions

D.t.B., D.K. and T.B. designed and carried out experiments, analysed data and wrote the paper. W.K., A.M., R.S. and E.E. designed and carried out experiments and analysed data. R.N. designed experiments and wrote the paper.

Corresponding author

Correspondence to Derk ten Berge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1258 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

ten Berge, D., Kurek, D., Blauwkamp, T. et al. Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 13, 1070–1075 (2011). https://doi.org/10.1038/ncb2314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing