Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation

Abstract

Instructive programmes guiding cell-fate decisions in the developing mouse embryo are controlled by a few so-termed master regulators. Genetic studies demonstrate that the T-box transcription factor Eomesodermin (Eomes) is essential for epithelial-to-mesenchymal transition, mesoderm migration and specification of definitive endoderm during gastrulation1. Here we report that Eomes expression within the primitive streak marks the earliest cardiac mesoderm and promotes formation of cardiovascular progenitors by directly activating the bHLH (basic-helix-loop-helix) transcription factor gene Mesp1 upstream of the core cardiac transcriptional machinery2,3,4. In marked contrast to Eomes/Nodal signalling interactions that cooperatively regulate anterior–posterior axis patterning and allocation of the definitive endoderm cell lineage1,5,6,7,8, formation of cardiac progenitors requires only low levels of Nodal activity accomplished through a Foxh1/Smad4-independent mechanism. Collectively, our experiments demonstrate that Eomes governs discrete context-dependent transcriptional programmes that sequentially specify cardiac and definitive endoderm progenitors during gastrulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fate mapping of E o m e sCre-expressing cells reveals selective contributions to definitive endoderm and cardiovascular cell lineages.
Figure 2: Eomes functional loss disrupts specification of cardiovascular progenitors.
Figure 3: Eomes-null embryonic stem cells fail to give rise to definitive endoderm and cardiomyocytes.
Figure 4: Eomes directly binds conserved T-box sites within the Mesp1 locus to activate expression.
Figure 5: Eomes and dose-dependent Nodal/Smad2/3 signalling levels control cardiac mesoderm and definitive endoderm specification during gastrulation.

Similar content being viewed by others

References

  1. Arnold, S. J., Hofmann, U. K., Bikoff, E. K. & Robertson, E. J. Pivotal roles for eomesodermin during axis formation, epithelium-to-mesenchyme transition and endoderm specification in the mouse. Development 135, 501–511 (2008).

    Article  CAS  Google Scholar 

  2. Bondue, A. et al. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3, 69–84 (2008).

    Article  CAS  Google Scholar 

  3. David, R. et al. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat. Cell Biol. 10, 338–345 (2008).

    Article  CAS  Google Scholar 

  4. Lindsley, R. C. et al. Mesp1 coordinately regulates cardiovascular fate restriction and epithelial–mesenchymal transition in differentiating ESCs. Cell Stem Cell 3, 55–68 (2008).

    Article  CAS  Google Scholar 

  5. Vincent, S. D., Dunn, N. R., Hayashi, S., Norris, D. P. & Robertson, E. J. Cell fate decisions within the mouse organizer are governed by graded Nodal signals. Genes Dev. 17, 1646–1662 (2003).

    Article  CAS  Google Scholar 

  6. Chu, G. C., Dunn, N. R., Anderson, D. C., Oxburgh, L. & Robertson, E. J. Differential requirements for Smad4 in TGFβ-dependent patterning of the early mouse embryo. Development 131, 3501–3512 (2004).

    Article  CAS  Google Scholar 

  7. Dunn, N. R., Vincent, S. D., Oxburgh, L., Robertson, E. J. & Bikoff, E. K. Combinatorial activities of Smad2 and Smad3 regulate mesoderm formation and patterning in the mouse embryo. Development 131, 1717–1728 (2004).

    Article  CAS  Google Scholar 

  8. Ben-Haim, N. et al. The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev. Cell 11, 313–323 (2006).

    Article  CAS  Google Scholar 

  9. Arnold, S. J. & Robertson, E. J. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10, 91–103 (2009).

    Article  CAS  Google Scholar 

  10. Lawson, K. A., Meneses, J. J. & Pedersen, R. A. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891–911 (1991).

    CAS  PubMed  Google Scholar 

  11. Tam, P. P., Parameswaran, M., Kinder, S. J. & Weinberger, R. P. The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development 124, 1631–1642 (1997).

    CAS  PubMed  Google Scholar 

  12. Hoodless, P. A. et al. FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse. Genes Dev. 15, 1257–1271 (2001).

    Article  CAS  Google Scholar 

  13. Yamamoto, M. et al. The transcription factor FoxH1 (FAST) mediates Nodal signaling during anterior–posterior patterning and node formation in the mouse. Genes Dev. 15, 1242–1256 (2001).

    Article  CAS  Google Scholar 

  14. Russ, A. P. et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404, 95–99 (2000).

    Article  CAS  Google Scholar 

  15. Ciruna, B. G. & Rossant, J. Expression of the T-box gene Eomesodermin during early mouse development. Mech. Dev. 81, 199–203 (1999).

    Article  CAS  Google Scholar 

  16. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  17. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  Google Scholar 

  18. Arnold, S. J., Sugnaseelan, J., Groszer, M., Srinivas, S. & Robertson, E. J. Generation and analysis of a mouse line harboring GFP in the Eomes/Tbr2 locus. Genesis 47, 775–781 (2009).

    Article  CAS  Google Scholar 

  19. Tremblay, K. D., Hoodless, P. A., Bikoff, E. K. & Robertson, E. J. Formation of the definitive endoderm in mouse is a Smad2-dependent process. Development 127, 3079–3090 (2000).

    CAS  PubMed  Google Scholar 

  20. Kuzmenkin, A. et al. Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. FASEB J. 23, 4168–4180 (2009).

    Article  CAS  Google Scholar 

  21. Saga, Y. Genetic rescue of segmentation defect in MesP2-deficient mice by MesP1 gene replacement. Mech. Dev. 75, 53–66 (1998).

    Article  CAS  Google Scholar 

  22. Saga, Y. et al. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126, 3437–3447 (1999).

    CAS  Google Scholar 

  23. Kitajima, S., Takagi, A., Inoue, T. & Saga, Y. MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127, 3215–3226 (2000).

    CAS  Google Scholar 

  24. Saga, Y., Hata, N., Koseki, H. & Taketo, M. M. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev. 11, 1827–1839 (1997).

    Article  CAS  Google Scholar 

  25. Haraguchi, S. et al. Transcriptional regulation of Mesp1 and Mesp2 genes:differential usage of enhancers during development. Mech. Dev. 108, 59–69 (2001).

    Article  CAS  Google Scholar 

  26. Oginuma, M., Hirata, T. & Saga, Y. Identification of presomitic mesoderm (PSM)-specific Mesp1 enhancer and generation of a PSM-specific Mesp1/Mesp2-null mouse using BAC-based rescue technology. Mech. Dev. 125, 432–440 (2008).

    Article  CAS  Google Scholar 

  27. Yasuhiko, Y. et al. Functional importance of evolutionally conserved Tbx6 binding sites in the presomitic mesoderm-specific enhancer of Mesp2. Development 135, 3511–3519 (2008).

    Article  CAS  Google Scholar 

  28. Habara-Ohkubo, A. Differentiation of beating cardiac muscle cells from a derivative of P19 embryonal carcinoma cells. Cell Struct. Funct. 21, 101–110 (1996).

    Article  CAS  Google Scholar 

  29. Chapman, D. L. et al. Expression of the T-box family genes, Tbx1–Tbx5, during early mouse development. Dev. Dyn. 206, 379–390 (1996).

    Article  CAS  Google Scholar 

  30. Chapman, D. L., Agulnik, I., Hancock, S., Silver, L. M. & Papaioannou, V. E. Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation. Dev. Biol. 180, 534–542 (1996).

    Article  CAS  Google Scholar 

  31. Wilkinson, D. G., Bhatt, S. & Herrmann, B. G. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343, 657–659 (1990).

    Article  CAS  Google Scholar 

  32. Shawlot, W. & Behringer, R. R. Requirement for Lim1 in head-organizer function. Nature 374, 425–430 (1995).

    Article  CAS  Google Scholar 

  33. Tam, P. P., Khoo, P. L., Wong, N., Tsang, T. E. & Behringer, R. R. Regionalization of cell fates and cell movement in the endoderm of the mouse gastrula and the impact of loss of Lhx1(Lim1) function. Dev. Biol. 274, 171–187 (2004).

    Article  CAS  Google Scholar 

  34. Norris, D. P., Brennan, J., Bikoff, E. K. & Robertson, E. J. The Foxh1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo. Development 129, 3455–3468 (2002).

    CAS  PubMed  Google Scholar 

  35. Teo, A. K. et al. Pluripotency factors regulate definitive endoderm specification through eomesodermin. Genes Dev. 25, 238–250 (2011).

    Article  CAS  Google Scholar 

  36. Powers, S. E. et al. Tgif1 and Tgif2 regulate Nodal signaling and are required for gastrulation. Development 137, 249–259 (2010).

    Article  CAS  Google Scholar 

  37. Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Manipulating the mouse embryo: a laboratory manual 3rd edn (Cold Spring Harbor Laboratory Press, 2003).

    Google Scholar 

  38. Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929 (2005).

    Article  CAS  Google Scholar 

  39. Costello, I., Biondi, C. A., Taylor, J. M., Bikoff, E. K. & Robertson, E. J. Smad4-dependent pathways control basement membrane deposition and endodermal cell migration at early stages of mouse development. BMC Dev. Biol. 9, 54 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Hortin, A. Salman and M. Pavlovic for technical assistance, C. Böhlke and A. Hofherr for help with imaging techniques, S. Stefanovic for qPCR primer optimization and H. Niwa and Y. Saga for plasmids. This work was supported by the Emmy Noether Programme and SFB850 of the German Research Council to S.J.A. and a Programme Grant from the Wellcome Trust to E.J.R.

Author information

Authors and Affiliations

Authors

Contributions

I.C., E.K.B., E.J.R. and S.J.A. designed experiments, I.C., I-M.P., S.D., E.J.R. and S.J.A. carried out research, I.C., E.J.R. and S.J.A. analysed data and I.C., E.K.B., E.J.R. and S.J.A. wrote and edited the manuscript.

Corresponding authors

Correspondence to Elizabeth J. Robertson or Sebastian J. Arnold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1698 kb)

Supplementary Movie 1

Supplementary Information (MOV 488 kb)

Supplementary Movie 2

Supplementary Information (MOV 989 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costello, I., Pimeisl, IM., Dräger, S. et al. The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat Cell Biol 13, 1084–1091 (2011). https://doi.org/10.1038/ncb2304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing