Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells

Abstract

In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material1. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae1. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP–CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization and role of cell-wall polysaccharides in root-hair cells.
Figure 2: Localization of fluorescent CESA and CSLD3 fusion proteins in growing root-hair cells.
Figure 3: Surface accessibility of CESA and CSLD3 proteins in A. thaliana roots and effect of actin depolymerization on eYFP–CSLD3 localization.
Figure 4: Effect of cellulose synthase inhibitors on root-hair growth. DCB effect on eYFP–CSLD3 localization.
Figure 5: The cellulose-synthase inhibitor CGA 325′615 stimulates recruitment of A. thaliana CESA proteins and CSLD3 into cell-wall extracts.

Similar content being viewed by others

References

  1. Cosgrove, D. J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Baskin, T. I. Anisotropic expansion of the plant cell wall. Annu. Rev. Cell Dev. Biol. 21, 203–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Arioli, T. et al. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279, 717–720 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Fagard, M. et al. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12, 2409–2424 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scheible, W. R. & Pauly, M. Glycosyltransferases and cell wall biosynthesis: novel players and insights. Curr. Opin. Plant Biol. 7, 285–295 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Taylor, N. G., Laurie, S. & Turner, S. R. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12, 2529–2540 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taylor, N. G., Scheible, W. R., Cutler, S., Somerville, C. R. & Turner, S. R. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11, 769–780 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taylor, N. G., Howells, R. M., Huttly, A. K., Vickers, K. & Turner, S. R. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl Acad. Sci. USA 100, 1450–1455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crowell, E. F. et al. Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21, 1141–1154 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Desprez, T. et al. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 104, 15572–15577 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gutierrez, R., Lindeboom, J. J., Paredez, A. R., Emons, A. M. & Ehrhardt, D. W. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol. 11, 797–806 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Paredez, A. R., Somerville, C. R. & Ehrhardt, D. W. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491–1495 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Wightman, R. & Turner, S. Trafficking of the cellulose synthase complex in developing xylem vessels. Biochem. Soc. Trans. 38, 755–760 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Newcomb, E. H. & Bonnett, H. T. Cytoplasmic microtubules and cell wall microfibril orientation in root hairs of radish. J. Cell Biol. 27, 575–589 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Emons, A. Helicoidal microfibril deposition in a tip-growing cell and microtubule alignment during rip morphogenesis: a dry-cleaving and freeze-substitution study. Can. J. Bot. 67, 2401–2408 (1989).

    Article  Google Scholar 

  16. Galway, M. E., Heckman, J. W. Jr & Schiefelbein, J. W. Growth and ultrastructure of Arabidopsis root hairs: the rhd3 mutation alters vacuole enlargement and tip growth. Planta 201, 209–218 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Desnos, T. et al. Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark- and light-grown Arabidopsis seedlings. Development 122, 683–693 (1996).

    CAS  PubMed  Google Scholar 

  18. Williamson, R. E. et al. Morphology of rsw1, a cellulose-deficient mutant of Arabidopsis thaliana. Protoplasma 215, 116–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Anderson, C. T., Carroll, A., Akhmetova, L. & Somerville, C. Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol. 152, 787–796 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blake, A. W. et al. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J. Biol. Chem. 281, 29321–29329 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Emons, A. M. C. & van Maaren, N. Helicoidal cell wall texture in root hairs. Planta 170, 145–151 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Emons, A. M. C. Cell wall texture in root hairs of the genus equisetum. Can. J. Bot. 64, 2201–2206 (1986).

    Article  Google Scholar 

  23. Carol, R. J. & Dolan, L. Building a hair: tip growth in Arabidopsis thaliana root hairs. Phil. Trans. R. Soc. Lond. B 357, 815–821 (2002).

    Article  CAS  Google Scholar 

  24. Favery, B. et al. KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev. 15, 79–89 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rajangam, A. S. et al. MAP20, a microtubule-associated protein in the secondary cell walls of hybrid aspen, is a target of the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile. Plant Physiol. 148, 1283–1294 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cavalier, D. M. et al. Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20, 1519–1537 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Galway, M. E., Eng, R. C., Schiefelbein, J. W. & Wasteneys, G. O. Root hair-specific disruption of cellulose and xyloglucan in AtCSLD3 mutants, and factors affecting the post-rupture resumption of mutant root hair growth. Planta 233, 985–999 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Birnbaum, K. et al. A gene expression map of the Arabidopsis root. Science 302, 1956–1960 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Brady, S. M. et al. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318, 801–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Baskin, T. I., Betzner, A. S., Hoggart, R., Cork, A. & Williamson, R. E. Root morphology mutants in Arabidopsis thaliana. Aust. J. Plant Physiol. 19, 427–437 (1992).

    Google Scholar 

  31. Bernal, A. J. et al. Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2, and CSLD4 in tip-growing Arabidopsis cells. Plant Physiol. 148, 1238–1253 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zeng, W. & Keegstra, K. AtCSLD2 is an integral Golgi membrane protein with its N-terminus facing the cytosol. Planta 228, 823–838 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Bibikova, T. N., Blancaflor, E. B. & Gilroy, S. Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J. 17, 657–665 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Preuss, M. L., Santos-Serna, J., Falbel, T. G., Bednarek, S. Y. & Nielsen, E. The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells. Plant Cell 16, 1589–1603 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. DeBolt, S., Gutierrez, R., Ehrhardt, D. W. & Somerville, C. Nonmotile cellulose synthase subunits repeatedly accumulate within localized regions at the plasma membrane in Arabidopsis hypocotyl cells following 2,6-dichlorobenzonitrile treatment. Plant Physiol. 145, 334–338 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Desprez, T. et al. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol. 128, 482–490 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scheible, W. R. et al. An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species. Plant Cell 15, 1781–1794 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peng, L. et al. The experimental herbicide CGA 325′615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline β-1,4-glucan associated with CesA protein. Plant Physiol. 126, 981–992 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bernal, A. J. et al. Disruption of ATCSLD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in βArabidopsis. Plant J. 52, 791–802 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Earley, K. W. et al. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616–629 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Somerville and H. Hofte for sharing eYFP–CESA6- and eGFP–CESA3-transformed lines, C. Collins for providing access to the spinning-disc confocal microscope and O. Shafer for access to the Olympus Fluoview confocal microscope. We would also like to thank S. Clark, S. DeBolt, A. Liepman and J. Schiefelbein for discussions. This work was supported by grants from the Department of Energy, DE-FG02-07ER15887 (E.N.), and the National Science Foundation, 0937323 (E.N.).

Author information

Authors and Affiliations

Authors

Contributions

S.P. carried out most experiments. A.L.S., F. Gu, F. Guo and E.N. all contributed to experimental work and data analysis in this manuscript. E.N. was also responsible for project planning.

Corresponding author

Correspondence to Erik Nielsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1170 kb)

Supplementary Movie 1

Supplementary Information (MOV 7387 kb)

Supplementary Movie 2a

Supplementary Information (MOV 7325 kb)

Supplementary Movie 2b

Supplementary Information (MOV 7391 kb)

Supplementary Movie 2c

Supplementary Information (MOV 6879 kb)

Supplementary Movie 3

Supplementary Information (MOV 1881 kb)

Supplementary Movie 4

Supplementary Information (MOV 966 kb)

Supplementary Movie 5

Supplementary Information (MOV 2089 kb)

Supplementary Movie 6

Supplementary Information (MOV 1250 kb)

Supplementary Movie 7

Supplementary Information (MOV 5440 kb)

Supplementary Movie 8a

Supplementary Information (MOV 641 kb)

Supplementary Movie 8b

Supplementary Information (MOV 802 kb)

Supplementary Movie 8c

Supplementary Information (MOV 967 kb)

Supplementary Movie 8d

Supplementary Information (MOV 1616 kb)

Supplementary Movie 9

Supplementary Information (MOV 2806 kb)

Supplementary Movie 10

Supplementary Information (MOV 2327 kb)

Supplementary Movie 11

Supplementary Information (MOV 2963 kb)

Supplementary Movie 12

Supplementary Information (MOV 1974 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Szumlanski, A., Gu, F. et al. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells. Nat Cell Biol 13, 973–980 (2011). https://doi.org/10.1038/ncb2294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing