Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis

Abstract

Abscission is the least understood step of cytokinesis. It consists of the final cut of the intercellular bridge connecting the sister cells at the end of mitosis, and is thought to involve membrane trafficking as well as lipid and cytoskeleton remodelling1,2,3,4,5,6. We previously identified the Rab35 GTPase as a regulator of a fast recycling endocytic pathway that is essential for post-furrowing cytokinesis stages7. Here, we report that the phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) 5-phosphatase OCRL, which is mutated in Lowe syndrome patients8,9, is an effector of the Rab35 GTPase in cytokinesis abscission. GTP-bound (active) Rab35 directly interacts with OCRL and controls its localization at the intercellular bridge. Depletion of Rab35 or OCRL inhibits cytokinesis abscission and is associated with local abnormal PtdIns(4,5)P2 and F-actin accumulation in the intercellular bridge. These division defects are also found in cell lines derived from Lowe patients and can be corrected by the addition of low doses of F-actin depolymerization drugs. Our data demonstrate that PtdIns(4,5)P2 hydrolysis is important for normal cytokinesis abscission to locally remodel the F-actin cytoskeleton in the intercellular bridge. They also reveal an unexpected role for the phosphatase OCRL in cell division and shed new light on the pleiotropic phenotypes associated with Lowe disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: OCRL directly interacts with GTP-bound Rab35.
Figure 2: Rab35 activation controls the accumulation of an OCRL pool in the cytokinesis intercellular bridge.
Figure 3: Cytokinesis abscission defects in cells depleted for Rab35 or OCRL, and in Lowe syndrome patient cells.
Figure 4: Abnormal local accumulation of PtdIns(4,5)P2 and F-actin at the intercellular bridges in cells depleted for OCRL or Rab35 and in Lowe syndrome patient cells.
Figure 5: Abscission defects observed in cells depleted for OCRL or Rab35 and in Lowe syndrome patient cells are suppressed by low doses of F-actin depolymerizing drugs.

Similar content being viewed by others

References

  1. Glotzer, M. The molecular requirements for cytokinesis. Science 307, 1735–1739 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Eggert, U. S., Mitchison, T. J. & Field, C. M. Animal cytokinesis: from parts list to mechanisms. Annu. Rev. Biochem. 75, 543–566 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Barr, F. A. & Gruneberg, U. Cytokinesis: placing and making the final cut. Cell 131, 847–860 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Echard, A. Membrane traffic and polarization of lipid domains during cytokinesis. Biochem. Soc. Trans. 36, 395–399 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Steigemann, P. & Gerlich, D. W. Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol. 19, 606–616 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Montagnac, G., Echard, A. & Chavrier, P. Endocytic traffic in animal cell cytokinesis. Curr. Opin. Cell Biol. 20, 454–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Kouranti, I., Sachse, M., Arouche, N., Goud, B. & Echard, A. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr. Biol. 16, 1719–1725 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Lowe, M. Structure and function of the Lowe syndrome protein OCRL1. Traffic 6, 711–719 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Vicinanza, M., D’Angelo, G., Di Campli, A. & De Matteis, M. A. Function and dysfunction of the PI system in membrane trafficking. EMBO J. 27, 2457–2470 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Echard, A., Hickson, G. R., Foley, E. & O’Farrell, P. H. Terminal cytokinesis events uncovered after an RNAi screen. Curr. Biol. 14, 1685–1693 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eggert, U. S. et al. Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biol. 2, e379 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Skop, A. R., Liu, H., Yates, J., III, Meyer, B. J. & Heald, R. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305, 61–66 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lowe, C. U., Terrey, M. & Mac, L. E. Organic-aciduria, decreased renal ammonia production, hydrophthalmos, and mental retardation; a clinical entity. Am. J. Dis. Child 83, 164–184 (1952).

    CAS  Google Scholar 

  14. Attree, O. et al. The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358, 239–242 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Hyvola, N. et al. Membrane targeting and activation of the Lowe syndrome protein OCRL1 by rab GTPases. EMBO J. 25, 3750–3761 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fukuda, M., Kanno, E., Ishibashi, K. & Itoh, T. Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity. Mol. Cell Proteomics 7, 1031–1042 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Hou, X. et al. A structural basis for Lowe syndrome caused by mutations in the Rab-binding domain of OCRL1. EMBO J. 30, 1659–1670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wilson, G. M. et al. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. Mol. Biol. Cell 16, 849–860 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choudhury, R. et al. Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol. Biol. Cell 16, 3467–3479 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Faucherre, A. et al. Lowe syndrome protein Ocrl1 is translocated to membrane ruffles upon Rac GTPase activation: a new perspective on Lowe syndrome pathophysiology. Hum. Mol. Genet. 14, 1441–1448 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Erdmann, K. S. et al. A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev. Cell 13, 377–390 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choudhury, R., Noakes, C. J., McKenzie, E., Kox, C. & Lowe, M. Differential clathrin binding and subcellular localization of OCRL1 splice isoforms. J. Biol. Chem. 284, 9965–9973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sato, M. et al. Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein. EMBO J. 27, 1183–1196 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, J., Fonovic, M., Suyama, K., Bogyo, M. & Scott, M. P. Rab35 controls actin bundling by recruiting fascin as an effector protein. Science 325, 1250–1254 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Allaire, P. D. et al. The Connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes. Mol. Cell 37, 370–382 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hichri, H. et al. From Lowe syndrome to Dent disease: correlations between mutations of the OCRL1 gene and clinical and biochemical phenotypes. Hum. Mutat. 32, 379–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, X., Jefferson, A. B., Auethavekiat, V. & Majerus, P. W. The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase. Proc. Natl Acad. Sci. USA 92, 4853–4856 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmid, A. C., Wise, H. M., Mitchell, C. A., Nussbaum, R. & Woscholski, R. Type II phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid composition and head group phosphorylation. FEBS Lett. 576, 9–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Hammond, G. R., Schiavo, G. & Irvine, R. F. Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P(2). Biochem. J. 422, 23–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Begle, A., Tryoen-Toth, P., de Barry, J., Bader, M. F. & Vitale, N. ARF6 regulates the synthesis of fusogenic lipids for calcium-regulated exocytosis in neuroendocrine cells. J. Biol. Chem. 284, 4836–4845 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Miserey-Lenkei, S. et al. Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat. Cell Biol. 12, 645–654 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Ma, L., Cantley, L. C., Janmey, P. A. & Kirschner, M. W. Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol. 140, 1125–1136 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wong, R. et al. PIP2 hydrolysis and calcium release are required for cytokinesis in Drosophila spermatocytes. Curr. Biol. 15, 1401–1406 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, H. H., Elia, N., Ghirlando, R., Lippincott-Schwartz, J. & Hurley, J. H. Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 322, 576–580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guizetti, J. et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331, 1616–1620 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Sagona, A. P. et al. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat. Cell Biol. 12, 362–371 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Suchy, S. F. & Nussbaum, R. L. The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Am. J. Hum. Genet. 71, 1420–1427 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, J. et al. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464, 1048–1051 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Echard, A. et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279, 580–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Nizak, C. et al. Recombinant antibodies against subcellular fractions used to track endogenous Golgi protein dynamics in vivo . Traffic 4, 739–753 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Racusen, L. C., Wilson, P. D., Hartz, P. A., Fivush, B. A. & Burrow, C. R. Renal proximal tubular epithelium from patients with nephropathic cystinosis: immortalized cell lines as in vitro model systems. Kidney Int. 48, 536–543 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Monnier, N., Satre, V., Lerouge, E., Berthoin, F. & Lunardi, J. OCRL1 mutation analysis in French Lowe syndrome patients: implications for molecular diagnosis strategy and genetic counseling. Hum. Mutat. 16, 157–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Uzan-Gafsou, S. et al. Rab11A controls the biogenesis of Birbeck granules by regulating Langerin recycling and stability. Mol. Biol. Cell 18, 3169–3179 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oorschot, V., de Wit, H., Annaert, W. G. & Klumperman, J. A novel flat-embedding method to prepare ultrathin cryosections from cultured cells in their in situ orientation. J. Histochem. Cytochem. 50, 1067–1080 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Slot, J. W. & Geuze, H. J. Cryosectioning and immunolabeling. Nat. Protoc. 2, 2480–2491 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Woscholski (Imperial College, London, UK), O. Dorseuil (Institut Cochin, Paris, France), A. Gautreau (CNRS Lebs, Gif, France), A. Alcover (Institut Pasteur, Paris), S. Miserey-Lenkei, P. Benaroch and F. Nagano (Institut Curie, Paris, France) for providing reagents and plasmids; V. Chauvet, A. Gautreau, A. Houdusse, B. Payrastre, N. Vitale and R. Weil for helpful discussions; S. Miserey-Lenkei and E. Crowell for critical reading of the manuscript; F. Legendre (Hôpital Necker, Paris, France) for the establishment of patients cell lines; and J. Lunardi (CHU Grenoble, France) and G. Baujat for the pediatric network. We thank the ‘Association du Syndrome de Lowe’, patients and parents. We thank the Plate-Forme d’Imagerie Dynamique (PFID) and Imagopole, Institut Pasteur, for microscopes and assistance. The authors thank V. Fraisier, L. Sengmanivong, J-B. Sibarita and J. Salamero for support in microscopy, and acknowledge the Nikon Imaging Centre at Institut Curie-CNRS. This work has been supported by the Institut PASTEUR (G5 program), the Institut CURIE, the CNRS, the INSERM, the Agence Nationale pour la Recherche (grants ANR-Maladies Rares, GIS-Maladies Rares to B.G. and R.S., and ANR 07-JCJC-0089 to A.E.) and the Schlumberger Foundation for Education and Research—FSER (A.E.). D.D. and M.M. have been supported by the Ministère de la Recherche et de l’Enseignement Supérieur, and D.D. and L.C. have been supported by the Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Contributions

D.D., M.M., L.C., M.S. and A.E. designed and analysed the experiments; D.D., M.M., L.C., M.S., M.R., A.E.M., E.F. and A.E. did the experimental work; R.S. and B.G. provided reagents; D.D., M.M., L.C., M.S., B.G. and A.E. wrote or edited the manuscript.

Corresponding author

Correspondence to Arnaud Echard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 902 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dambournet, D., Machicoane, M., Chesneau, L. et al. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat Cell Biol 13, 981–988 (2011). https://doi.org/10.1038/ncb2279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing