Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RasGRF suppresses Cdc42-mediated tumour cell movement, cytoskeletal dynamics and transformation

An Erratum to this article was published on 01 August 2011

This article has been updated

Abstract

Individual tumour cells move in three-dimensional environments with either a rounded or an elongated ‘mesenchymal’ morphology. These two modes of movement are tightly regulated by Rho family GTPases: elongated movement requires activation of Rac1, whereas rounded/amoeboid movement engages specific Cdc42 and Rho signalling pathways. In siRNA screens targeting the genes encoding guanine nucleotide exchange factors (GEFs), we found that the Ras GEF RasGRF2 regulates conversion between elongated- and rounded-type movement. RasGRF2 suppresses rounded movement by inhibiting the activation of Cdc42 independently of its capacity to activate Ras. RasGRF2 and RasGRF1 directly bind to Cdc42, outcompeting Cdc42 GEFs, thereby preventing Cdc42 activation. By this mechanism, RasGRFs regulate other Cdc42-mediated cellular processes such as the formation of actin spikes, transformation and invasion in vitro and in vivo. These results demonstrate a role for RasGRF GEFs as negative regulators of Cdc42 activation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depletion of RasGRF2 affects cell morphology and movement in a Rac/Rho-independent manner.
Figure 2: RasGRF GEFs negatively regulate Cdc42 activation.
Figure 3: RasGRF GEFs associate with Cdc42 in vivo.
Figure 4: RasGRF GEFs regulate Cdc42-mediated transformation and filopodia formation in NIH3T3 cells.
Figure 5: Endogenous RasGRF2 regulates Cdc42-mediated filopodia formation in HeLa cells
Figure 6: RasGRF2 regulates invasion and lung colonization by melanoma cells.

Similar content being viewed by others

Change history

  • 15 July 2011

    In the version of this article initially published online and in print, the panel on the lower right-hand side of Fig. 3a corresponding to the anti-SOS blot was incorrectly duplicated and shown in place of the anti-Cdc42 blot.

References

  1. Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ridley, A.J. Rho GTPases and cell migration. J. Cell Sci. 114, 2713–2722 (2001).

    CAS  PubMed  Google Scholar 

  3. Sanz-Moreno, V. et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 135, 510–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Gadea, G., Sanz-Moreno, V., Self, A., Godi, A. & Marshall, C.J. DOCK10-mediated Cdc42 activation is necessary for amoeboid invasion of melanoma cells. Curr. Biol. 18, 1456–1465 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Sahai, E. & Marshall, C.J. Differing modes of tumor cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell Biol. 5, 711–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Wilkinson, S., Paterson, H.F. & Marshall, C.J. Cdc42–MRCK and Rho–ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat. Cell Biol. 7, 255–261 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Wyckoff, J.B., Pinner, S.E., Gschmeissner, S., Condeelis, J.S. & Sahai, E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 16, 1515–1523 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt, A. & Hall, A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587–1609 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Meller, N., Irani-Tehrani, M., Kiosses, W.B., Del Pozo, M.A. & Schwartz, M.A. Zizimin1 A novel Cdc42 activator, reveals a new GEF domain for Rho proteins. Nat. Cell Biol. 4, 639–647 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Cote, J.F. & Vuori, K. Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J. Cell Sci. 115, 4901–4913 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez-Medarde, A. & Santos, E. The RasGrf family of mammalian guanine nucleotide exchange factors. Biochim. Biophys. Acta 1815, 170–188 (2011).

    CAS  PubMed  Google Scholar 

  12. Clark, E.A., Golub, T.R., Lander, E.S. & Hynes, R.O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Fan, W.T., Koch, C.A., de Hoog, C.L., Fam, N.P. & Moran, M.F. The exchange factor Ras-GRF2 activates Ras-dependent and Rac-dependent mitogen-activated protein kinase pathways. Curr. Biol. 8, 935–938 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Arozarena, I. et al. Activation of H-Ras in the endoplasmic reticulum by the RasGRF family guanine nucleotide exchange factors. Mol. Cell Biol. 24, 1516–1530 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruiz, S., Santos, E. & Bustelo, X.R. RasGRF2, a guanosine nucleotide exchange factor for Ras GTPases, participates in T-cell signaling responses. Mol. Cell Biol. 27, 8127–8142 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, S. et al. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J. Biol. Chem. 270, 23934–23936 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Fam, N.P. et al. Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras. Mol. Cell Biol. 17, 1396–1406 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zippel, R. et al. Ras-GRF, the activator of Ras, is expressed preferentially in mature neurons of the central nervous system. Brain Res. Mol. Brain Res. 48, 140–144 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Arozarena, I. et al. The Rho family GTPase Cdc42 regulates the activation ofRas/MAP kinase by the exchange factor Ras-GRF. J. Biol Chem. 275, 26441–26448 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Arozarena, I., Matallanas, D. & Crespo, P. Maintenance of CDC42 GDP-bound state by Rho-GDI inhibits MAP kinase activation by the exchange factor Ras-GRF. Evidence for Ras-GRF function being inhibited by Cdc42-GDP but unaffected by CDC42-GTP. J. Biol. Chem. 276, 21878–21884 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Calvo, F. & Crespo, P. Structural and spatial determinants regulating TC21 activation by RasGRF family nucleotide exchange factors. Mol. Biol. Cell 20, 4289–4302 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feig, L.A. Tools of the trade: use of dominant inhibitory mutants of Ras-family GTPases. Nat. Cell Biol. 1, 25–27 (1999).

    Article  Google Scholar 

  23. Mattingly, R.R. & Macara, I.G. Phosphorylation-dependent activation of the Ras-GRF/CDC25Mm exchange factor by muscarinic receptors and G-protein βγ subunits. Nature 382, 268–272 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Soisson, S.M., Nimnual, A.S., Uy, M., Bar-Sagi, D. & Kuriyan, J. Crystal structure of the Dbl and pleckstrin homology domains from the human Son of sevenless protein. Cell 95, 259–268 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Nobes, C.D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Lin, R., Cerione, R.A. & Manor, D. Specific contributions of the small GTPases Rho, Rac, and Cdc42 to Dbl transformation. J. Biol. Chem. 274, 23633–23641 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Bustelo, X.R. Regulatory and signaling properties of the Vav family. Mol. Cell Biol. 20, 1461–1477 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pinner, S. & Sahai, E. PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nat. Cell Biol. 10, 127–137 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, K., Debreceni, B., Li, R. & Zheng, Y. Identification of Rho GTPase-dependent sites in the Dbl homology domain of oncogenic Dbl that are required for transformation. J. Biol. Chem. 275, 25993–26001 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Snyder, J.T. et al. Structural basis for the selective activation of Rho GTPases by Dbl exchange factors. Nat. Struct. Biol. 9, 468–475 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Briggs, M.W. & Sacks, D.B. IQGAP proteins are integral components of cytoskeletal regulation. EMBO Rep. 4, 571–574 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, H. et al. Aberrant methylation of RASGRF2 and RASSF1A in human non-small cell lung cancer. Oncol. Rep. 15, 1281–1285 (2006).

    CAS  PubMed  Google Scholar 

  33. Jacinto, F.V., Ballestar, E., Ropero, S. & Esteller, M. Discovery of epigenetically silenced genes by methylated DNA immunoprecipitation in colon cancer cells. Cancer Res. 67, 11481–11486 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Ruiz, S., Santos, E. & Bustelo, X.R. The use of knockout mice reveals a synergistic role of the Vav1 and Rasgrf2 gene deficiencies in lymphomagenesis and metastasis. PLoS One 4, e8229 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fluge, O., Bruland, O., Akslen, L.A., Lillehaug, J.R. & Varhaug, J.E. Geneexpression in poorly differentiated papillary thyroid carcinomas. Thyroid 16, 161–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. de Hoog, C.L., Fan, W.T., Goldstein, M.D., Moran, M.F. & Koch, C.A. Calmodulin-independent coordination of Ras and extracellular signal-regulated kinase activation by Ras-GRF2. Mol. Cell Biol. 20, 2727–2733 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lopez-Lago, M., Lee, H., Cruz, C., Movilla, N. & Bustelo, X.R. Tyrosine phosphorylation mediates both activation and downmodulation of the biological activity of Vav. Mol. Cell Biol. 20, 1678–1691 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sahai, E., Olson, M.F. & Marshall, C.J. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. Embo J. 20, 755–766 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Moran, L. Feig and X. Bustelo for providing reagents. P.C.’s laboratory is supported by grants BFU2008-01728 from the Spanish Ministry of Education, GROWTHSTOP (LSHC CT-2006-037731) from the EU VI Framework Program and Red Temática de Investigación Cooperativa en Cáncer (RTICC; RD06/0020/0105), Spanish Ministry of Health. C.J.M.’s laboratory is supported by Cancer Research UK. C.J.M. is a Gibb Life Fellow of Cancer Research UK.

Author information

Authors and Affiliations

Authors

Contributions

F.C. carried out all of the experiments with the exception of those shown in Figs 1 and 6, which were carried out by F.C. and V.S-M. V.S-M. and F.W. carried out the invasion assays and imaging of the invading cells. L.A-I. carried out the in vitro GTPase binding experiments and the soft-agar colonies. F.C. and V.S-M. also prepared the figures and carried out the statistical analyses. E.S. contributed in the lung colonization assays. F.C., V.S-M., C.J.M. and P.C. conceived the study and C.J.M. and P.C. wrote the manuscript.

Corresponding author

Correspondence to Piero Crespo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1694 kb)

Supplementary Information

Supplementary Movie 1 (WMV 2081 kb)

Supplementary Information

Supplementary Movie 2 (WMV 2213 kb)

Supplementary Information

Supplementary Movie 3 (WMV 1665 kb)

Supplementary Information

Supplementary Movie 4 (WMV 2046 kb)

Supplementary Information

Supplementary Movie 5 (WMV 1879 kb)

Supplementary Information

Supplementary Movie 6 (WMV 2528 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvo, F., Sanz-Moreno, V., Agudo-Ibáñez, L. et al. RasGRF suppresses Cdc42-mediated tumour cell movement, cytoskeletal dynamics and transformation. Nat Cell Biol 13, 819–826 (2011). https://doi.org/10.1038/ncb2271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2271

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer