Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A role for actin arcs in the leading-edge advance of migrating cells

Abstract

Epithelial cell migration requires coordination of two actin modules at the leading edge: one in the lamellipodium and one in the lamella. How the two modules connect mechanistically to regulate directed edge motion is not understood. Using live-cell imaging and photoactivation approaches, we demonstrate that the actin network of the lamellipodium evolves spatio-temporally into the lamella. This occurs during the retraction phase of edge motion, when myosin II redistributes to the lamellipodial actin and condenses it into an actin arc parallel to the edge. The new actin arc moves rearward, slowing down at focal adhesions in the lamella. We propose that net edge extension occurs by nascent focal adhesions advancing the site at which new actin arcs slow down and form the base of the next protrusion event. The actin arc thereby serves as a structural element underlying the temporal and spatial connection between the lamellipodium and the lamella during directed cell motion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retrograde-actin-flow rates change several times over a single edge-protrusion/retraction cycle.
Figure 2: Differential actin-filament turnover during protrusion and retraction.
Figure 3: Actin-arc dynamics at the leading edge.
Figure 4: Myosin II activity condenses the lamellipodium into an actin arc.
Figure 5: Oscillatory edge motion and net edge extension.
Figure 6: Differential slippage of focal adhesions in crawling versus non-crawling cells correlates with new-actin-arc movement.
Figure 7: The advance of the lamella results from an actin-arc treadmill.
Figure 8: Model of the structural dynamics of the actin cytoskeleton underlying edge motion.

Similar content being viewed by others

References

  1. Rafelski, S. M. & Theriot, J. A. Crawling toward a unified model of cell mobility: spatial and temporal regulation of actin dynamics. Annu. Rev. Biochem. 73, 209–239 (2004).

    Article  CAS  Google Scholar 

  2. Wang, Y. L. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. Cell Biol. 101, 597–602 (1985).

    Article  CAS  Google Scholar 

  3. Svitkina, T. M., Verkhovsky, A. B., McQuade, K. M. & Borisy, G. G. Analysis of the actin–myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J. Cell Biol. 139, 397–415 (1997).

    Article  CAS  Google Scholar 

  4. Svitkina, T. Electron microscopic analysis of the leading edge in migrating cells. Methods Cell Biol. 79, 295–319 (2007).

    Article  CAS  Google Scholar 

  5. Koestler, S. A., Auinger, S., Vinzenz, M., Rottner, K. & Small, J. V. Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nat. Cell Biol. 10, 306–313 (2008).

    Article  CAS  Google Scholar 

  6. Urban, E., Jacob, S., Nemethova, M., Resch, G. P. & Small, J. V. Electron tomography reveals unbranched networks of actin filaments in lamellipodia. Nat. Cell Biol. 12, 429–435 (2010).

    Article  CAS  Google Scholar 

  7. Heath, J. P. Arcs: curved microfilament bundles beneath the dorsal surface of the leading lamellae of moving chick embryo fibroblasts. Cell Biol. Int. Rep. 5, 975–980 (1981).

    Article  CAS  Google Scholar 

  8. Gupton, S. L. & Waterman-Storer, C. M. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125, 1361–1374 (2006).

    Article  CAS  Google Scholar 

  9. Forscher, P. & Smith, S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J. Cell Biol. 107, 1505–1516 (1988).

    Article  CAS  Google Scholar 

  10. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  Google Scholar 

  11. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004).

    Article  CAS  Google Scholar 

  12. Hotulainen, P. & Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006).

    Article  CAS  Google Scholar 

  13. Giannone, G. et al. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116, 431–443 (2004).

    Article  CAS  Google Scholar 

  14. Danuser, G. Coupling the dynamics of two actin networks—new views on the mechanics of cell protrusion. Biochem. Soc. Trans. 33, 1250–1253 (2005).

    Article  CAS  Google Scholar 

  15. Giannone, G. et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128, 561–575 (2007).

    Article  CAS  Google Scholar 

  16. Vallotton, P. & Small, J. V. Shifting views on the leading role of the lamellipodium in cell migration: speckle tracking revisited. J. Cell Sci. 122, 1955–1958 (2009).

    Article  CAS  Google Scholar 

  17. Danuser, G. Testing the lamella hypothesis: the next steps on the agenda. J. Cell Sci. 122, 1959–1962 (2009).

    Article  CAS  Google Scholar 

  18. Mogilner, A. & Keren, K. The shape of motile cells. Curr. Biol. 19, R762–R771 (2009).

    Article  CAS  Google Scholar 

  19. Machacek, M. & Danuser, G. Morphodynamic profiling of protrusion phenotypes. Biophys. J. 90, 1439–1452 (2006).

    Article  CAS  Google Scholar 

  20. Small, J. V. et al. Unravelling the structure of the lamellipodium. J. Microsc. 231, 479–485 (2008).

    Article  CAS  Google Scholar 

  21. Svitkina, T. M., Verkhovsky, A. B. & Borisy, G. G. Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells. J. Struct. Biol. 115, 290–303 (1995).

    Article  CAS  Google Scholar 

  22. Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8, 1227–1230 (1998).

    Article  CAS  Google Scholar 

  23. Hu, K., Ji, L., Applegate, K. T., Danuser, G. & Waterman-Storer, C. M. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007).

    Article  CAS  Google Scholar 

  24. Gardel, M. L. et al. Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183, 999–1005 (2008).

    Article  CAS  Google Scholar 

  25. Medeiros, N. A., Burnette, D. T. & Forscher, P. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat. Cell Biol. 8, 215–226 (2006).

    Article  CAS  Google Scholar 

  26. Choi, C. K. et al. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. 10, 1039–1050 (2008).

    Article  CAS  Google Scholar 

  27. Webb, D. J., Parsons, J. T. & Horwitz, A. F. Adhesion assembly, disassembly and turnover in migrating cells—over and over and over again. Nat. Cell Biol. 4, E97–E100 (2002).

    Article  CAS  Google Scholar 

  28. Alexandrova, A. Y. et al. Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow. PLoS One 3, e3234 (2008).

    Article  Google Scholar 

  29. Aratyn-Schaus, Y. & Gardel, M. L. Transient frictional slip between integrin and the ECM in focal adhesions under myosin II tension. Curr. Biol. 20, 1145–1153 (2010).

    Article  CAS  Google Scholar 

  30. Wilson, C. A. et al. Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 465, 373–377 (2010).

    Article  CAS  Google Scholar 

  31. Zhang, X. F., Schaefer, A. W., Burnette, D. T., Schoonderwoert, V. T. & Forscher, P. Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow. Neuron 40, 931–944 (2003).

    Article  CAS  Google Scholar 

  32. Shemesh, T., Verkhovsky, A. B., Svitkina, T. M., Bershadsky, A. D. & Kozlov, M. M. Role of focal adhesions and mechanical stresses in the formation and progression of the lamellipodium–lamellum interface [corrected]. Biophys. J. 97, 1254–1264 (2009).

    Article  CAS  Google Scholar 

  33. Rossier, O. M. et al. Force generated by actomyosin contraction builds bridges between adhesive contacts. EMBO J. 29, 1055–1068 (2010).

    Article  CAS  Google Scholar 

  34. Mongiu, A. K., Weitzke, E. L., Chaga, O. Y. & Borisy, G. G. Kinetic-structural analysis of neuronal growth cone veil motility. J. Cell Sci. 120, 1113–1125 (2007).

    Article  CAS  Google Scholar 

  35. Wittmann, T., Bokoch, G. M. & Waterman-Storer, C. M. Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J. Cell Biol. 161, 845–851 (2003).

    Article  CAS  Google Scholar 

  36. Ji, L. & Danuser, G. Tracking quasi-stationary flow of weak fluorescent signals by adaptive multi-frame correlation. J. Microsc. 220, 150–167 (2005).

    Article  CAS  Google Scholar 

  37. Burnette, D. T. et al. Myosin II activity facilitates microtubule bundling in the neuronal growth cone neck. Dev. Cell 15, 163–169 (2008).

    Article  CAS  Google Scholar 

  38. Burnette, D. T., Schaefer, A. W., Ji, L., Danuser, G. & Forscher, P. Filopodial actin bundles are not necessary for microtubule advance into the peripheral domain of Aplysia neuronal growth cones. Nat. Cell Biol. 9, 1360–1369 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Lippincott-Schwartz Laboratory for helpful comments and suggestions. D.T.B. was supported by a Pharmacology Research Associate Fellowship from NIGMS, NIH during the course of these studies.

Author information

Authors and Affiliations

Authors

Contributions

D.T.B., S.M. and J.L-S. designed experiments and wrote the paper. D.T.B. carried out the experiments. D.T.B., S.M. and P.S. analysed the data. M.W.D. contributed new fluorescence probes. R.S. and B.K. contributed expertise in electron microscopy.

Corresponding author

Correspondence to Jennifer Lippincott-Schwartz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1232 kb)

Supplementary Movie 1

Supplementary Information (MOV 2289 kb)

Supplementary Movie 2

Supplementary Information (MOV 3431 kb)

Supplementary Movie 3

Supplementary Information (MOV 3896 kb)

Supplementary Movie 4

Supplementary Information (MOV 3915 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnette, D., Manley, S., Sengupta, P. et al. A role for actin arcs in the leading-edge advance of migrating cells. Nat Cell Biol 13, 371–382 (2011). https://doi.org/10.1038/ncb2205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing