Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of endothelial sprouting by a Tel–CtBP complex

Abstract

We show that the transcriptional repressor Tel plays an evolutionarily conserved role in angiogenesis: it is indispensable for the sprouting of human endothelial cells and for normal development of the Danio rerio blood circulatory system. Tel orchestrates endothelial sprouting by binding to the generic co-repressor, CtBP. The Tel–CtBP complex temporally restricts a VEGF (vascular endothelial growth factor)-mediated pulse of dll4 expression and thereby directly links VEGF receptor intracellular signalling and intercellular Notch–Dll4 signalling. It further controls branching by regulating expression of other factors that constrain angiogenesis such as sprouty family members and ve-cadherin. Thus, the Tel–CtBP complex conditions endothelial cells for angiogenesis by controlling the balance between stimulatory and antagonistic sprouting cues. Tel control of branching seems to be a refinement of invertebrate tracheae morphogenesis that requires Yan, the invertebrate orthologue of Tel. This work highlights Tel and its associated networks as potential targets for the development of therapeutic strategies to inhibit pathological angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tel is essential for endothelial sprouting.
Figure 2: Tel associates with CtBP through a conserved consensus-binding motif.
Figure 3: The N terminus of CtBP2 reinforces stable interactions between CtBP2 and Tel.
Figure 4: CtBP regulates Tel stability and subcellular localization.
Figure 5: Tel control of endothelial sprouting requires CtBP.
Figure 6: Tel primes endothelial sprouting by inhibiting expression of sprouting antagonists.
Figure 7: Tel and CtBP2 are required for zebrafish embryo angiogenesis.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Phng, L.-K. & Gerhardt, H. Angiogenesis: a team effort coordinated by Notch. Developmental Cell 16, 196–208 (2009).

    Article  CAS  Google Scholar 

  2. Gerhardt, H. VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4, 241–246 (2008).

    Article  Google Scholar 

  3. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  Google Scholar 

  4. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  Google Scholar 

  5. Gerhardt, H. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  Google Scholar 

  6. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 444, 776–780 (2006).

    Google Scholar 

  7. Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008).

    Article  CAS  Google Scholar 

  8. Krebs, L. T. et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14, 1343–1352 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16, 2684–2698 (2002).

    Article  CAS  Google Scholar 

  10. Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037 (2006).

    Article  CAS  Google Scholar 

  11. Leslie, J. D. et al. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134, 839–844 (2007).

    Article  CAS  Google Scholar 

  12. Hogan, B. M. et al. VEGFC/Flt4 signalling is suppressed by Dll4 in developing zebrafish intersegmental arteries. Development 36, 4001–4009 (2009).

    Article  Google Scholar 

  13. Bahary, N. et al. Duplicate VegfA genes and orthologues of the KDR receptor tyrosine kinase family mediate vascular development in the zebrafish. Blood 15, 3627–3636 (2007).

    Article  Google Scholar 

  14. Siekmann, A. F. & Lawson, N. D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445, 781–784 (2007).

    Article  CAS  Google Scholar 

  15. Liu, Z.-J. et al. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol. Cell Biol. 23, 14–25 (2003).

    Article  Google Scholar 

  16. Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumor growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006).

    Article  CAS  Google Scholar 

  17. Sainson, R. C. A. et al. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J. 19, 1027–1029 (2005).

    Article  CAS  Google Scholar 

  18. Ruhrberg, C. Growing and shaping the vascular tree: multiple roles for VEGF. Bioessays 25, 1052–1060 (2003).

    Article  CAS  Google Scholar 

  19. Gale, N. W. et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc. Natl Acad. Sci. USA 101, 15949–15954 (2004).

    Article  CAS  Google Scholar 

  20. Duarte, A. et al. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev. 18, 2474–2478 (2004).

    Article  CAS  Google Scholar 

  21. Siekmann, A. F., Covassin, L. & Lawson, N. D. Modulation of VEGF signaling output by the Notch pathway. Bioassays 30, 303–313 (2008).

    Article  CAS  Google Scholar 

  22. Lobov, I. B. et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc. Natl Acad. Sci. USA 104, 3219–3224 (2007).

    Article  CAS  Google Scholar 

  23. Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl. Acad. Sci. USA 104, 3225–3230 (2007).

    Article  CAS  Google Scholar 

  24. Ghabrial, A., Luschnig, S., Metzstein, M. M. & Krasnow, M. A. Branching morphogenesis of the Drosophila tracheal system. Annu. Rev. Cell Dev. Biol. 19, 623–647 (2003).

    Article  CAS  Google Scholar 

  25. Ghabrial, A. & Krasnow, M. A. Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 441, 746–749 (2006).

    Article  CAS  Google Scholar 

  26. Brunner, D. et al. The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature 370, 386–389 (1994).

    Article  CAS  Google Scholar 

  27. Rebay, I. & Rubin, G. M. Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway. Cell 80, 857–866 (1995).

    Article  Google Scholar 

  28. Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. & Krasnow, M. A. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253–263 (1998).

    Article  CAS  Google Scholar 

  29. Ikeya, T. & Hayashi, S. Interplay of Notch and FGF signaling restricts cell fate and MAPK activation in the Drosophila trachea. Development 126, 4455–4463 (1999).

    CAS  PubMed  Google Scholar 

  30. Golub, T. R., Barker, G. F., Lovett, M. & Gilliland, D. G. Fusion of PDGF receptor beta to a novel Ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77, 307–316 (1994).

    Article  CAS  Google Scholar 

  31. Wang, L. C. et al. Yolk sac angiogenic defect and intra-embryonic apoptosis in mice lacking the Ets-related factor TEL. EMBO J. 16, 4374–4383 (1997).

    Article  CAS  Google Scholar 

  32. Lopez, R. G. et al. TEL is a sequence-specific transcriptional repressor. J. Biol. Chem. 274, 30132–30138 (1999).

    Article  CAS  Google Scholar 

  33. Roukens, M. G. et al. Identification of a new site of sumoylation on Tel (ETV6) uncovers a PIAS-dependent mode of regulating Tel function. Mol. Cell Biol. 28, 2342–2357 (2008).

    Article  CAS  Google Scholar 

  34. Roukens, M. G., Alloul-Ramdhani, M., Moghadasi, S., Op den Brouw, M. & Baker, D. A. Downregulation of vertebrate Tel (ETV6) and Drosophila Yan is facilitated by an evolutionarily conserved mechanism of F-box-mediated ubiquitination. Mol. Cell Biol. 28, 4394–4406 (2008).

    Article  CAS  Google Scholar 

  35. Chinnadurai, G. Transcriptional regulation by C-terminal binding proteins. Int. J. Biochem. Cell Biol. 39, 1593–1607 (2007).

    Article  CAS  Google Scholar 

  36. Nakatsu, M. N. & Hughes, C. C. W. An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol. 443, 65–82 (2008).

    Article  CAS  Google Scholar 

  37. Hildebrand, J. D. & Soriano, P. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol. Cell Biol. 22, 5296–5307 (2002).

    Article  CAS  Google Scholar 

  38. Schaeper, U. et al. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc. Natl. Acad. Sci. USA 92, 10467–10471 (1995).

    Article  CAS  Google Scholar 

  39. Turner, J. & Crossley, M. The CtBP family: enigmatic and enzymatic transcriptional co-repressors. BioEssays 23, 683–690 (2001).

    Article  CAS  Google Scholar 

  40. Soderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    Article  Google Scholar 

  41. Nardini, M. et al. CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO J. 22, 3122–3130 (2003).

    Article  CAS  Google Scholar 

  42. Zhao, L.-J., Subramanian, T., Zhou, Y. & Chinnadurai, G. Acetylation by p300 regulates nuclear localization and function of the transcriptional corepressor CtBP2. J. Biol. Chem. 281, 4183–4189 (2006).

    Article  CAS  Google Scholar 

  43. Zhang, Q., Piston, D. W. & Goodman, R. H. Regulation of corepressor function by nuclear NADH. Science 295, 1895–1897 (2002).

    CAS  PubMed  Google Scholar 

  44. Benedito, R. et al. The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009).

    Article  CAS  Google Scholar 

  45. Cabrita, M. A. & Christofori, G. Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 11, 53–62 (2008).

    Article  CAS  Google Scholar 

  46. Vestweber, D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler. Thromb. Vasc. Biol. 28, 223–232 (2008).

    Article  CAS  Google Scholar 

  47. Lawson, N. D. & Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002).

    Article  CAS  Google Scholar 

  48. Isogai, S., Lawson, N. D., Torrealday, S., Horiguchi, M. & Weinstein, B. M. Angiogenic network formation in the developing vertebrate trunk. Development 130, 5281–5290 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Department of Molecular Cell Biology and the Schulte-Merker laboratory for helpful discussions. We would particularly like to thank P. Meier, P. ten Dijke, E. Meulmeester and M. Goncalves for critical reading of the manuscript. We are indebted to G. Chinnadurai for the human CtBP plasmids, S. Parkhurst for the Drosophila CtBP plasmid and antibody and Genentech for providing their neutralizing anti-Dll4 antibody16. We thank E. Bos for assistance with the culture of HUVECs and L. Hawinkels for providing primary tumour sections and, together with L. Pardali, for advice on the immunohistochemistry experiments. We are indebted to F. Bos for help and advice with microscopy. We are grateful to J. Oosting for the analyses of the microarray data and A. van der Laan for help with the confocal microscopy.

Author information

Authors and Affiliations

Authors

Contributions

M.G.R. performed most of the experiments assisted by M.A.R. and D.A.B. B.B. performed PLA experiments assisted by H. v.D. K.K. isolated and cultured fresh primary HUVECs. J. P.-M. and S. S.-M. helped design and perform experiments described in Figure 7. S. S.-M. provided reagents, essential technical expertise and intellectual input. D.A.B. conceived the project, designed the experiments with M.G.R. and wrote the paper assisted by M.G.R.

Corresponding author

Correspondence to David A. Baker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–10 (PDF 2147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roukens, M., Alloul-Ramdhani, M., Baan, B. et al. Control of endothelial sprouting by a Tel–CtBP complex. Nat Cell Biol 12, 933–942 (2010). https://doi.org/10.1038/ncb2096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2096

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing