Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo

Abstract

The small GTPase Rac induces actin polymerization, membrane ruffling and focal contact formation in cultured single cells1 but can either repress or stimulate motility in epithelial cells depending on the conditions2,3. The role of Rac in collective epithelial cell movements in vivo, which are important for both morphogenesis and metastasis4,5,6,7, is therefore difficult to predict. Recently, photoactivatable analogues of Rac (PA-Rac) have been developed, allowing rapid and reversible activation or inactivation of Rac using light8. In cultured single cells, light-activated Rac leads to focal membrane ruffling, protrusion and migration. Here we show that focal activation of Rac is also sufficient to polarize an entire group of cells in vivo, specifically the border cells of the Drosophila ovary. Moreover, activation or inactivation of Rac in one cell of the cluster caused a dramatic response in the other cells, suggesting that the cells sense direction as a group according to relative levels of Rac activity. Communication between cells of the cluster required Jun amino-terminal kinase (JNK) but not guidance receptor signalling. These studies further show that photoactivatable proteins are effective tools in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Local activation of PA-Rac1 redirects an entire border cell group.
Figure 2: Forward or backward movement in response to photoactivatable Rac.
Figure 3: Responsiveness of border cells to PA-RacQ61L depends on their location within the egg chamber.
Figure 4: Local photoactivation or photoinactivation of Rac in one cell affects the morphology and behaviour of other cells in the group.
Figure 5: Rac activity pattern in migrating border cell clusters.

Similar content being viewed by others

References

  1. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  Google Scholar 

  2. Sander, E. E. & Collard, J. G. Rho-like GTPases: their role in epithelial cell-cell adhesion and invasion. Eur. J. Cancer 35, 1302–1308 (1999).

    Article  CAS  Google Scholar 

  3. Fukata, M. & Kaibuchi, K. Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat. Rev. Mol. Cell Biol. 2, 887–897 (2001).

    Article  CAS  Google Scholar 

  4. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445–457 (2009).

    Article  CAS  Google Scholar 

  5. Weijer, C. J. Collective cell migration in development. J. Cell Sci. 122, 3215–3223 (2009).

    Article  CAS  Google Scholar 

  6. Rorth, P. Collective cell migration. Annu. Rev. Cell Dev. Biol. 25, 407–429 (2009).

    Article  CAS  Google Scholar 

  7. Bidard, F. C., Pierga, J. Y., Vincent-Salomon, A. & Poupon, M. F. A “class action” against the microenvironment: do cancer cells cooperate in metastasis? Cancer Metastasis Rev. 27, 5–10 (2008).

    Article  CAS  Google Scholar 

  8. Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  CAS  Google Scholar 

  9. Silver, D. L. & Montell, D. J. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 107, 831–841 (2001).

    Article  CAS  Google Scholar 

  10. Silver, D. L., Geisbrecht, E. R. & Montell, D. J. Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development 132, 3483–3492 (2005).

    CAS  PubMed  Google Scholar 

  11. Bai, J., Uehara, Y. & Montell, D. J. Regulation of invasive cell behavior by Taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103, 1047–1058 (2000).

    Article  CAS  Google Scholar 

  12. Duchek, P. & Rorth, P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 291, 131–133 (2001).

    Article  CAS  Google Scholar 

  13. Duchek, P., Somogyi, K., Jekely, G., Beccari, S. & Rorth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26 (2001).

    Article  CAS  Google Scholar 

  14. McDonald, J. A., Pinheiro, E. M., Kadlec, L., Schupbach, T. & Montell, D. J. Multiple EGFR ligands participate in guiding migrating border cells. Dev. Biol. 296, 94–103 (2006).

    Article  CAS  Google Scholar 

  15. McDonald, J. A., Pinheiro, E. M. & Montell, D. J. PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 130, 3469–3478 (2003).

    Article  CAS  Google Scholar 

  16. Wang, X., Adam, J. C. & Montell, D. Spatially localized Kuzbanian required for specific activation of Notch during border cell migration. Dev. Biol. 301, 532–540 (2007).

    Article  CAS  Google Scholar 

  17. Murphy, A. M. & Montell, D. J. Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. J. Cell Biol. 133, 617–630 (1996).

    Article  CAS  Google Scholar 

  18. Geisbrecht, E. R. & Montell, D. J. A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell 118, 111–125 (2004).

    Article  CAS  Google Scholar 

  19. Prasad, M., Jang, A. C. C., Starz-Gaiano, M., Melani, M., & Montell, D. A. A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging Nat. Protoc. 2, 2467–2473 (2007).

    Article  CAS  Google Scholar 

  20. Prasad, M. & Montell, D. J. Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev. Cell 12, 997–1005 (2007).

    Article  CAS  Google Scholar 

  21. Montell, D. J. Border-cell migration: the race is on. Nat. Rev. Mol. Cell Biol. 4, 13–24 (2003).

    Article  CAS  Google Scholar 

  22. Jang, A. C., Chang, Y. C., Bai, J. & Montell, D. Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt. Nat. Cell Biol. 11, 569–579 (2009).

    Article  CAS  Google Scholar 

  23. Montell, D. J., Rorth, P. & Spradling, A. C. slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell 71, 51–62 (1992).

    Article  CAS  Google Scholar 

  24. Llense, F. & Martin-Blanco, E. JNK signaling controls border cell cluster integrity and collective cell migration. Curr. Biol. 18, 538–544 (2008).

    Article  CAS  Google Scholar 

  25. Kardash, E. et al. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nat. Cell Biol. 12, 47–53 (2010).

    Article  CAS  Google Scholar 

  26. Rorth, P. Collective guidance of collective cell migration. Trends Cell Biol. 17, 575–579 (2007).

    Article  CAS  Google Scholar 

  27. Rorth, P. et al. Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057 (1998).

    CAS  PubMed  Google Scholar 

  28. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  Google Scholar 

  29. Edwards, K. A., Demsky, M., Montague, R. A., Weymouth, N. & Kiehart, D. P. GFP-moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila. Dev. Biol. 191, 103–117 (1997).

    Article  CAS  Google Scholar 

  30. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).

    Article  CAS  Google Scholar 

  31. McDonald, J. A. & Montell, D. J. Analysis of cell migration using Drosophila as a model system. Methods Mol. Biol. 294, 175–202 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants GM046425 to D.J.M. and GM 057464 to K.M.H. and by the Cell Migration Consortium.

Author information

Authors and Affiliations

Authors

Contributions

X.W. carried out the experiments documented in Figs 1, 2, 3 and Supplementary Information, Figs S1–S5. L.H. carried out the experiments shown in Figs 4, 5 and Supplementary Information, Figs S5–S7. X.W. made all of the transgenic flies and helped L.H. to collect FRET data in Fig. 5. Y.W. developed and provided the PA-Rac constructs and advised X.W. on their use. K.M.H. and D.J.M. coordinated the study. D.J.M. prepared the final version of the manuscript, based on contributions from all authors.

Corresponding author

Correspondence to Denise J. Montell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1853 kb)

Supplementary Information

Supplementary Information Movie 1 (MOV 1282 kb)

Supplementary Information

Supplementary Information Movie 2 (MOV 4778 kb)

Supplementary Information

Supplementary Information Movie 3 (MOV 7410 kb)

Supplementary Information

Supplementary Information Movie 4 (MOV 6682 kb)

Supplementary Information

Supplementary Information Movie 5 (MOV 3364 kb)

Supplementary Information

Supplementary Information Movie 6 (MOV 6420 kb)

Supplementary Information

Supplementary Information Movie 7 (MOV 4277 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., He, L., Wu, Y. et al. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat Cell Biol 12, 591–597 (2010). https://doi.org/10.1038/ncb2061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2061

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing