Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of a Golgi flippase by phosphoinositides and an ArfGEF

Abstract

The essential role for phosphatidylinositol-4-phosphate (PtdIns(4)P) in vesicle-mediated protein transport from the trans-Golgi network (TGN) was first described in the budding yeast Saccharomyces cerevisiae1,2,3. However, the identity of downstream effectors of PtdIns(4)P in this system has been elusive. Here, we show that Drs2p, a type IV P-type ATPase required for phospholipid translocase (flippase) activity and transport vesicle budding from the TGN4,5,6,7,8, is an effector of PtdIns(4)P. Drs2p-dependent flip of a fluorescent phosphatidylserine analogue across purified TGN membranes requires synthesis of PtdIns(4)P by the phosphatidylinositol-4-kinase (PI(4)K) Pik1p. PtdIns(4)P binds to a regulatory domain in the C-terminal tail of Drs2p that has homology to a split PH domain and is required for Drs2p activity. In addition, basic residues required for phosphoinositide binding overlap a previously mapped binding site for the ArfGEF Gea2p9. ArfGEF binding to this C-terminal domain also stimulates flippase activity in TGN membrane preparations. These interactions suggest the presence of a coincidence detection system used to activate phospholipid translocation at sites of vesicle formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of Drs2p does not perturb phosphoinositide metabolism.
Figure 2: NBD-PS flippase activity in TGN membranes requires Drs2p and PI(4)K activity catalysed by Pik1p.
Figure 3: Stimulation of NBD-PS flippase activity by phosphoinositides.
Figure 4: Functional requirement for a phosphoinositide binding motif in the Drs2p C-terminal tail.
Figure 5: Synergistic activation of NBD-PS flippase activity by phosphoinositide and ArfGEF.

Similar content being viewed by others

References

  1. Hama, H., Schnieders, E. A., Thorner, J., Takemoto, J. Y. & DeWald, D. B. Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274, 34294–34300 (1999).

    Article  CAS  Google Scholar 

  2. Walch-Solimena, C. & Novick, P. The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nature Cell Biol. 1, 523–525 (1999).

    Article  CAS  Google Scholar 

  3. Audhya, A., Foti, M. & Emr, S. D. Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol. Biol. Cell 11, 2673–2689 (2000).

    Article  CAS  Google Scholar 

  4. Gall, W. E. et al. T. R. Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo. Curr. Biol. 12, 1623–1627 (2002).

    Article  CAS  Google Scholar 

  5. Hua, Z., Fatheddin, P. & Graham, T. R. An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. Mol. Biol. Cell 13, 3162–3177 (2002).

    Article  CAS  Google Scholar 

  6. Natarajan, P., Wang, J., Hua, Z. & Graham, T. R. Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc. Natl Acad. Sci. USA 101, 10614–10619 (2004).

    Article  CAS  Google Scholar 

  7. Liu, K., Surendhran, K., Nothwehr, S. F. & Graham, T. R. P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes. Mol. Biol. Cell 19, 3526–3535 (2008).

    Article  CAS  Google Scholar 

  8. Chen, C. Y., Ingram, M. F., Rosal, P. H. & Graham, T. R. Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. J. Cell Biol. 147, 1223–1236 (1999).

    Article  CAS  Google Scholar 

  9. Chantalat, S. et al. The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. J. Cell Sci. 117, 711–722 (2004).

    Article  CAS  Google Scholar 

  10. Vicinanza, M., D'Angelo, G., Di Campli, A. & De Matteis, M. A. Function and dysfunction of the PI system in membrane trafficking. EMBO J. 27, 2457–2470 (2008).

    Article  CAS  Google Scholar 

  11. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  Google Scholar 

  12. Niggli, V. Regulation of protein activities by phosphoinositide phosphates. Annu. Rev. Cell Dev. Biol. 21, 57–79 (2005).

    Article  CAS  Google Scholar 

  13. Behnia, R. & Munro, S. Organelle identity and the signposts for membrane traffic. Nature 438, 597–604 (2005).

    Article  CAS  Google Scholar 

  14. Wang, Y. J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 (2003).

    Article  CAS  Google Scholar 

  15. Wang, J. et al. PI4P promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal. Mol. Biol. Cell 18, 2646–2655 (2007).

    Article  CAS  Google Scholar 

  16. Mills, I. G. et al. EpsinR: an AP1/clathrin interacting protein involved in vesicle trafficking. J. Cell Biol. 160, 213–222 (2003).

    Article  Google Scholar 

  17. Hanada, K., Kumagai, K., Tomishige, N. & Kawano, M. CERT and intracellular trafficking of ceramide. Biochim. Biophys. Acta 1771, 644–653 (2007).

    Article  CAS  Google Scholar 

  18. D'Angelo, G. et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449, 62–67 (2007).

    Article  CAS  Google Scholar 

  19. Demmel, L. et al. The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. Mol. Biol. Cell 19, 1991–2002 (2008).

    Article  CAS  Google Scholar 

  20. Li, X. et al. Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex. J. Cell Biol. 157, 63–77 (2002).

    Article  CAS  Google Scholar 

  21. Levine, T. P. & Munro, S. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr. Biol. 12, 695–704 (2002).

    Article  CAS  Google Scholar 

  22. Strahl, T., Hama, H., DeWald, D. B. & Thorner, J. Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J. Cell Biol. 171, 967–979 (2005).

    Article  CAS  Google Scholar 

  23. Sciorra, V. A. et al. Synthetic genetic array analysis of the PtdIns 4-kinase Pik1p identifies components in a Golgi-specific Ypt31/rab-GTPase signaling pathway. Mol. Biol. Cell 16, 776–793 (2005).

    Article  CAS  Google Scholar 

  24. Liu, K., Hua, Z., Nepute, J. A. & Graham, T. R. Yeast P4-ATPases Drs2p and Dnf1p are essential cargos of the NPFXD/Sla1p endocytic pathway. Mol. Biol. Cell 18, 487–500 (2007).

    Article  CAS  Google Scholar 

  25. Teo, H. et al. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell 125, 99–111 (2006).

    Article  CAS  Google Scholar 

  26. Di Leva, F., Domi, T., Fedrizzi, L., Lim, D. & Carafoli, E. The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Arch. Biochem. Biophys. 476, 65–74 (2008).

    Article  CAS  Google Scholar 

  27. Rudge, S. A., Anderson, D. M. & Emr, S. D. Vacuole size control: regulation of PtdIns(3, 5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3, 5)P2-specific phosphatase. Mol. Biol. Cell 15, 24–36 (2004).

    Article  CAS  Google Scholar 

  28. Natarajan, P. & Graham, T. R. Measuring translocation of fluorescent lipid derivatives across yeast Golgi membranes. Methods 39, 163–168 (2006).

    Article  CAS  Google Scholar 

  29. Muthusamy, B. P. et al. Control of protein and sterol trafficking by antagonistic activities of a type IV P-type ATPase and oxysterol binding protein homologue. Mol. Biol. Cell 20, 2920–2931 (2009).

    Article  CAS  Google Scholar 

  30. Chantalat, S. et al. The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. J. Cell Sci. 117, 711–22 (2004).

    Article  CAS  Google Scholar 

  31. Drin, G. et al. A general amphipathic α-helical motif for sensing membrane curvature. Nature Struct. Mol. Biol. 14, 138–146 (2007).

    Article  CAS  Google Scholar 

  32. Walsh, J. P., Caldwell, K. K. & Majerus, P. W. Formation of phosphatidylinositol 3-phosphate by isomerization from phosphatidylinositol 4-phosphate. Proc. Natl Acad. Sci. USA 88, 9184–9187 (1991).

    Article  CAS  Google Scholar 

  33. Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Scott D. Emr and Anjon Audhya for yeast strains, John York for providing the GST-Inp53-Sac1 plasmid, Jonathan Goldberg for the His-Gea2p-Sec7 plasmid and our lab colleagues for comments on this manuscript. These studies were supported by NIH Grant GM62367 (to T.R.G.)

Author information

Authors and Affiliations

Authors

Contributions

P.N. performed most of the project planning, experimental work, data analysis and manuscript preparation. Experimental work was also contributed by K.L. (Fig. 1b), D.V.P (Fig. 4c) V.A.S. (Fig. 1a), and C.L.J. (Fig, 5c). TRG contributed to project planning, data analysis and manuscript preparation.

Corresponding author

Correspondence to Todd R. Graham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 780 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natarajan, P., Liu, K., Patil, D. et al. Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nat Cell Biol 11, 1421–1426 (2009). https://doi.org/10.1038/ncb1989

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1989

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing