Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse

Abstract

Most eukaryotic cells have a primary cilium which functions as a sensory organelle1. Cilia are assembled by intraflagellar transport (IFT), a process mediated by multimeric IFT particles and molecular motors2. Here we show that lymphoid and myeloid cells, which lack primary cilia, express IFT proteins. IFT20, an IFT component essential for ciliary assembly3,4, was found to colocalize with both the microtubule organizing centre (MTOC) and Golgi and post-Golgi compartments in T-lymphocytes. In antigen-specific conjugates, IFT20 translocated to the immune synapse. IFT20 knockdown resulted in impaired T-cell receptor/CD3 (TCR/CD3) clustering and signalling at the immune synapse, due to defective polarized recycling. Moreover, IFT20 was required for the inducible assembly of a complex with other IFT components (IFT57 and IFT88) and the TCR. The results identify IFT20 as a new regulator of immune synapse assembly in T cells and provide the first evidence to implicate IFT in membrane trafficking in cells lacking primary cilia, thereby introducing a new perspective on IFT function beyond its role in ciliogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IFT20 is expressed in T-cells and associates with the Golgi apparatus and MTOC.
Figure 2: IFT20 is required for TCR/CD3 clustering and signalling at the immune synapse.
Figure 3: IFT20 is required for trafficking of the TCR/CD3 complex in recycling endosomes.
Figure 4: IFT20 inducibly associates with other IFT components in response to TCR activation.
Figure 5: Schematic representation of the localization and function of IFT20 in TCR/CD3 trafficking and immune synapse formation.

Similar content being viewed by others

References

  1. Scholey, J. M. & Anderson, K. V. Intraflagellar transport and cilium-based signaling. Cell 125, 439–442 (2006).

    Article  CAS  Google Scholar 

  2. Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nature Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  Google Scholar 

  3. Follit, J. A., Tuft, R. A., Fogarty K. E. & Pazour, G. J. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol. Biol. Cell 17, 3781–3792 (2006).

    Article  CAS  Google Scholar 

  4. Jonassen, J. A., San Agustin, J., Follit, J. A. & Pazour, G. J. Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J. Cell Biol. 183, 377–384 (2008).

    Article  CAS  Google Scholar 

  5. Cemerski, S. & Shaw, A. Immune synapses in T-cell activation Curr. Opin. Immunol. 18, 298–304 (2006).

    Article  CAS  Google Scholar 

  6. Dustin, M. L., Tseng, S. Y., Varma, R. & Campi, G. T cell-dendritic cell immunological synapses. Curr. Opin. Immunol. 18, 512–516 (2006).

    Article  CAS  Google Scholar 

  7. Sancho, D. et al. Regulation of microtubule-organizing center orientation and actomyosin cytoskeleton rearrangement during immune interactions. Immunol. Rev. 189, 84–97 (2002).

    Article  CAS  Google Scholar 

  8. Martin-Cofreres, N. B. et al., MTOC translocation modulates IS formation and controls sustained T cell signaling. J. Cell Biol. 182, 951–962 (2008).

    Article  Google Scholar 

  9. Das, V. et al., Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity 20, 577–588 (2004).

    Article  CAS  Google Scholar 

  10. Pazour, G. J. & Witman, G. B. The vertebrate primary cilium is a sensory organelle. Curr. Opin. Cell Biol. 15, 105–110 (2003).

    Article  CAS  Google Scholar 

  11. Wulfing, C. et al., Interface accumulation of receptor/ligand couples in lymphocyte activation: methods, mechanisms, and significance. Immunol. Rev. 189, 64–83 (2002).

    Article  CAS  Google Scholar 

  12. Kane, L. P., Lin, J. & Weiss, A. Signal transduction by the TCR for antigen. Curr. Opin. Immunol. 12, 242–249 (2000).

    Article  CAS  Google Scholar 

  13. Geisler, C. TCR trafficking in resting and stimulated T cells. Crit. Rev. Immunol. 24, 67–86 (2004).

    Article  CAS  Google Scholar 

  14. Alcover, A. & Alarcon, B. Internalization and intracellular fate of TCR-CD3 complexes. Crit. Rev. Immunol. 20, 325–346 (2000).

    Article  CAS  Google Scholar 

  15. Lanzavecchia, A. & Sallusto, F. From synapses to immunological memory: the role of sustained T cell stimulation. Curr. Opin. Immunol. 12, 92–98 (2000).

    Article  CAS  Google Scholar 

  16. Satir, P., Mitchell, D. R. & Jekely, G. How did the cilium evolve? Curr. Top. Dev. Biol. 85, 63–82 (2008).

    Article  CAS  Google Scholar 

  17. Bethune, J., Wieland, F. & Moelleken, J. COPI-mediated transport. J. Membr. Biol. 211, 65–79 (2006).

    Article  CAS  Google Scholar 

  18. Follit, J. A. et al. The Golgin GMAP210/TRIP11 anchors IFT20 to the Golgi complex. PLoS Genet. 4, e1000315 (2008).

    Article  Google Scholar 

  19. Pazour, G. J. & Rosenbaum, J. L. Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol. 12, 551–555 (2002).

    Article  CAS  Google Scholar 

  20. Pacini, S. et al., Tyrosine 474 of ZAP-70 is required for association with the Shc adaptor and for T-cell antigen receptor-dependent gene activation. J. Biol. Chem. 273, 20487–20493 (1998).

    Article  CAS  Google Scholar 

  21. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    Article  CAS  Google Scholar 

  22. Pazour, G. J . et al. The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J. Cell Biol. 157, 103–113 (2002).

    Article  CAS  Google Scholar 

  23. Boncristiano, M. et al., The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. J. Exp. Med. 198, 1887–1897 (2003).

    Article  CAS  Google Scholar 

  24. D'Oro, U. et al. Regulation of constitutive TCR internalization by the zeta-chain. J. Immunol. 169, 6269–6278 (2002).

    Article  CAS  Google Scholar 

  25. Patrussi, L. et al. Cooperation and selectivity of the two Grb2 binding sites of p52Shc in T-cell antigen receptor signaling to Ras family GTPases and Myc-dependent survival. Oncogene 24, 2218–2228 (2005).

    Article  CAS  Google Scholar 

  26. Esquerré, M. et al. Human regulatory T cells inhibit polarization of T helper cells toward antigen-presenting cells via a TGF-beta-dependent mechanism. Proc. Natl Acad. Sci. USA 105, 2550–2555 (2008).

    Article  Google Scholar 

  27. Perinetti, G. et al. Correlation of 4Pi and electron microscopy to study transport through single Golgi stacks in living cells with super resolution. Traffic 10, 379–391 (2009).

    Article  CAS  Google Scholar 

  28. O'Haver, T. C. Potential clinical applications of derivative and wavelength-modulation spectrometry. Clin. Chem. 25, 1548–1553 (1979).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank G. Callaini for invaluable help with fluorescence microscopy, S. Grassini for technical assistance, A. Alcover, S. Valitutti, P. Lupetti, A. Luini, A. Colanzi, A. De Matteis and C. Mencarelli for useful discussions and J. L Telford and A. Alcover for critical reading of the manuscript. This work was supported by grants from AIRC (to C.T.B.) and the National Institutes of Health (GM060992 to G.J.P. and GM-14,642 to J.L.R.). F.F. is the recipient of a FIRC fellowship.

Author information

Authors and Affiliations

Authors

Contributions

F.F., S.R.P., C.T.B., G.J.P. and J.L.R. planned the project and drafted the manuscript; F.F., S.R.P., M.G.R. and E.G. carried out the experimental work; F.F., S.R.P., C.T.B., E.G., G.P. and M.G.R. analysed the data.

Corresponding author

Correspondence to Cosima T. Baldari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 809 kb)

Supplementary Information

Supplementary Movie 1 (AVI 7328 kb)

Supplementary Information

Supplementary Movie 2 (AVI 7328 kb)

Supplementary Information

Supplementary Movie 3 (AVI 6569 kb)

Supplementary Information

Supplementary Movie 4 (AVI 6588 kb)

Supplementary Information

Supplementary Movie 5 (AVI 9217 kb)

Supplementary Information

Supplementary Movie 6 (AVI 11707 kb)

Supplementary Information

Supplementary Movie 7 (AVI 8004 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finetti, F., Paccani, S., Riparbelli, M. et al. Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat Cell Biol 11, 1332–1339 (2009). https://doi.org/10.1038/ncb1977

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1977

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing