Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein kinase DYRK2 is a scaffold that facilitates assembly of an E3 ligase

Abstract

Protein kinases have central functions in various cellular signal transduction pathways through their substrate phosphorylation. Here we show that a protein kinase, DYRK2, has unexpected role as a scaffold for an E3 ubiquitin ligase complex. DYRK2 associates with an E3 ligase complex containing EDD, DDB1 and VPRBP proteins (EDVP complex). Strikingly, DYRK2 serves as a scaffold for the EDVP complex, because small-interfering-RNA-mediated depletion of DYRK2 disrupts the formation of the EDD–DDB1–VPRBP complex. Although the kinase activity of DYRK2 is dispensable for its ability to mediate EDVP complex formation, it is required for the phosphorylation and subsequent degradation of its downstream substrate, katanin p60. Collectively, our results reveal a new type of E3-ubiquitin ligase complex in humans that depends on a protein kinase for complex formation as well as for the subsequent phosphorylation, ubiquitylation and degradation of their substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of EDD–DDB1–VPRBP as DYRK2-associated proteins.
Figure 2: DYRK2 functions as an adaptor in the EDVP E3 ligase complex.
Figure 3: Katanin p60 is the ubiquitylation substrate for EDVP E3 ligase complex.
Figure 4: EDVP E3 ligase complex regulates katanin p60 protein levels.
Figure 5: DYRK2 phosphorylates katanin.
Figure 6: DYRK2 kinase activity is required for the regulation of katanin degradation.
Figure 7: DYRK2 regulates mitotic progression by means of its adaptor and kinase function.

Similar content being viewed by others

References

  1. Becker, W. et al. Sequence characteristics, subcellular localization, and substrate specificity of DYRK-related kinases, a novel family of dual specificity protein kinases. J. Biol. Chem. 273, 25893–25902 (1998).

    Article  CAS  Google Scholar 

  2. Kannan, N. & Neuwald, A. F. Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2α. Protein Sci. 13, 2059–2077 (2004).

    Article  CAS  Google Scholar 

  3. Lochhead, P. A., Sibbet, G., Morrice, N. & Cleghon, V. Activation-loop autophosphorylation is mediated by a novel transitional intermediate form of DYRKs. Cell 121, 925–936 (2005).

    Article  CAS  Google Scholar 

  4. Gwack, Y. et al. A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441, 646–650 (2006).

    Article  CAS  Google Scholar 

  5. Woods, Y. L. et al. The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bɛ at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem. J. 355, 609–615 (2001).

    Article  CAS  Google Scholar 

  6. Skurat, A. V. & Dietrich, A. D. Phosphorylation of Ser640 in muscle glycogen synthase by DYRK family protein kinases. J. Biol. Chem. 279, 2490–2498 (2004).

    Article  CAS  Google Scholar 

  7. Nishi, Y. & Lin, R. DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans. Dev. Biol. 288, 139–149 (2005).

    Article  CAS  Google Scholar 

  8. Lu, C. & Mains, P. E. The C. elegans anaphase promoting complex and MBK-2/DYRK kinase act redundantly with CUL-3/MEL-26 ubiquitin ligase to degrade MEI-1 microtubule-severing activity after meiosis. Dev. Biol. 302, 438–447 (2007).

    Article  CAS  Google Scholar 

  9. Kinstrie, R., Lochhead, P. A., Sibbet, G., Morrice, N. & Cleghon, V. dDYRK2 and Minibrain interact with the chromatin remodelling factors SNR1 and TRX. Biochem. J. 398, 45–54 (2006).

    Article  CAS  Google Scholar 

  10. Taira, N., Nihira, K., Yamaguchi, T., Miki, Y. & Yoshida, K. DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol. Cell 25, 725–738 (2007).

    Article  CAS  Google Scholar 

  11. Gorringe, K. L., Boussioutas, A. & Bowtell, D. D. Novel regions of chromosomal amplification at 6p21, 5p13, and 12q14 in gastric cancer identified by array comparative genomic hybridization. Genes Chromosomes Cancer 42, 247–259 (2005).

    Article  CAS  Google Scholar 

  12. Miller, C. T. et al. Amplification and overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 (DYRK2) gene in esophageal and lung adenocarcinomas. Cancer Res. 63, 4136–4143 (2003).

    CAS  PubMed  Google Scholar 

  13. Callaghan, M. J. et al. Identification of a human HECT family protein with homology to the Drosophila tumor suppressor gene hyperplastic discs. Oncogene 17, 3479–3491 (1998).

    Article  CAS  Google Scholar 

  14. Honda, Y. et al. Cooperation of HECT-domain ubiquitin ligase hHYD and DNA topoisomerase II-binding protein for DNA damage response. J. Biol. Chem. 277, 3599–3605 (2002).

    Article  CAS  Google Scholar 

  15. Clancy, J. L. et al. EDD, the human orthologue of the hyperplastic discs tumour suppressor gene, is amplified and overexpressed in cancer. Oncogene 22, 5070–5081 (2003).

    Article  CAS  Google Scholar 

  16. O'Brien, P. M. et al. The E3 ubiquitin ligase EDD is an adverse prognostic factor for serous epithelial ovarian cancer and modulates cisplatin resistance in vitro. Br. J. Cancer 98, 1085–1093 (2008).

    Article  CAS  Google Scholar 

  17. Chu, G. & Chang, E. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242, 564–567 (1988).

    Article  CAS  Google Scholar 

  18. Angers, S. et al. Molecular architecture and assembly of the DDB1–CUL4A ubiquitin ligase machinery. Nature 443, 590–593 (2006).

    Article  CAS  Google Scholar 

  19. Lee, J. & Zhou, P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol. Cell 26, 775–780 (2007).

    Article  CAS  Google Scholar 

  20. Jin, J., Arias, E. E., Chen, J., Harper, J. W. & Walter, J. C. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol. Cell 23, 709–721 (2006).

    Article  CAS  Google Scholar 

  21. He, Y. J., McCall, C. M., Hu, J., Zeng, Y. & Xiong, Y. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4–ROC1 ubiquitin ligases. Genes Dev. 20, 2949–2954 (2006).

    Article  CAS  Google Scholar 

  22. Higa, L. A. et al. CUL4–DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nature Cell Biol. 8, 1277–1283 (2006).

    Article  CAS  Google Scholar 

  23. Cullinan, S. B., Gordan, J. D., Jin, J., Harper, J. W. & Diehl, J. A. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell. Biol. 24, 8477–8486 (2004).

    Article  CAS  Google Scholar 

  24. Xu, L. et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425, 316–321 (2003).

    Article  CAS  Google Scholar 

  25. Salinas, G. D. et al. Actinfilin is a Cul3 substrate adaptor, linking GluR6 kainate receptor subunits to the ubiquitin–proteasome pathway. J. Biol. Chem. 281, 40164–40173 (2006).

    Article  CAS  Google Scholar 

  26. Pintard, L. et al. Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr. Biol. 13, 911–921 (2003).

    Article  CAS  Google Scholar 

  27. Stitzel, M. L., Pellettieri, J. & Seydoux, G. The C. elegans DYRK Kinase MBK-2 marks oocyte proteins for degradation in response to meiotic maturation. Curr. Biol. 16, 56–62 (2006).

    Article  CAS  Google Scholar 

  28. Campbell, L. E. & Proud, C. G. Differing substrate specificities of members of the DYRK family of arginine-directed protein kinases. FEBS Lett. 510, 31–36 (2002).

    Article  CAS  Google Scholar 

  29. McNally, F. J. & Thomas, S. Katanin is responsible for the M-phase microtubule-severing activity in Xenopus eggs. Mol. Biol. Cell 9, 1847–1861 (1998).

    Article  CAS  Google Scholar 

  30. McNally, K., Audhya, A., Oegema, K. & McNally, F. J. Katanin controls mitotic and meiotic spindle length. J. Cell Biol. 175, 881–891 (2006).

    Article  CAS  Google Scholar 

  31. Munoz, M. A. et al. The E3 ubiquitin ligase EDD regulates S-phase and G2/M DNA damage checkpoints. Cell Cycle 6, 3070–3077 (2007).

    Article  CAS  Google Scholar 

  32. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  Google Scholar 

  33. Hunter, T. The age of crosstalk: phosphorylation, ubiquitylation, and beyond. Mol. Cell 28, 730–738 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jamie Wood for critical reading of the manuscript and for providing valuable suggestions. We thank Amanda Russell for providing EDD expression vectors. This work was supported in part by grants from the National Institutes of Health (to J.C.). J.C. is a recipient of an Era of Hope Scholars award from the Department of Defense and is a member of Mayo Clinic Breast SPORE programme.

Author information

Authors and Affiliations

Authors

Contributions

S.M. performed all the experiments. S.M. and J.C. designed the experiments, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Junjie Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1292 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddika, S., Chen, J. Protein kinase DYRK2 is a scaffold that facilitates assembly of an E3 ligase. Nat Cell Biol 11, 409–419 (2009). https://doi.org/10.1038/ncb1848

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1848

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing