Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A ribosomal protein L23-nucleophosmin circuit coordinates Miz1 function with cell growth

Abstract

The Myc-associated zinc-finger protein, Miz1, is a negative regulator of cell proliferation and induces expression of the cell-cycle inhibitors p15Ink4b and p21Cip1. Here we identify the ribosomal protein L23 as a negative regulator of Miz1-dependent transactivation. L23 exerts this function by retaining nucleophosmin, an essential co-activator of Miz1 required for Miz1-induced cell-cycle arrest, in the nucleolus. Mutant forms of nucleophosmin found in acute myeloid leukaemia fail to co-activate Miz1 and re-localize it to the cytosol. As L23 is encoded by a direct target gene of Myc, this regulatory circuit may provide a feedback mechanism that links translation of Myc target genes and cell growth to Miz1-dependent cell-cycle arrest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of L23 as a negative regulator of Miz1 function.
Figure 2: Depletion of endogenous L23 activates target genes of Miz1.
Figure 3: Nucleophosmin is a co-activator of Miz1.
Figure 4: Nucleophosmin interacts with the POZ-domain of Miz1.
Figure 5: L23 and Myc disrupt the complex between Miz1 and nucleophosmin.
Figure 6: Nucleophosmin is an essential co-activator of Miz1.
Figure 7: Mutant alleles of nucleophosmin fail to co-activate Miz1.
Figure 8: A potential feedback loop monitors translation of Myc target genes.

Similar content being viewed by others

References

  1. Oster, S. K., Ho, C. S., Soucie, E. L. & Penn, L. Z. The myc oncogene: marvelously complex. Adv. Cancer Res. 84, 81–154 (2002).

    Article  CAS  Google Scholar 

  2. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nature Rev. Mol. Cell Biol. 6, 635–645 (2005).

    Article  CAS  Google Scholar 

  3. Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer 3, 179–192 (2003).

    Article  CAS  Google Scholar 

  4. Menssen, A. & Hermeking, H. Characterization of the c-MYC-regulated transcriptome by SAGE: Identification and analysis of c-MYC target genes. Proc. Natl Acad. Sci. USA 99, 6274–6279. (2002).

    Article  CAS  Google Scholar 

  5. Guo, Q. M. et al. Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res. 60, 5922–5928. (2000).

    CAS  PubMed  Google Scholar 

  6. Kim, S., Li, Q., Dang, C. V. & Lee, L. A. Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc. Natl Acad. Sci. USA 97, 11198–11202 (2000).

    Article  CAS  Google Scholar 

  7. Arabi, A. et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nature Cell Biol. 7, 303–310 (2005).

    Article  CAS  Google Scholar 

  8. Grandori, C. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biol. 7, 311–318 (2005).

    Article  CAS  Google Scholar 

  9. Keller, U. B. et al. Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis. EMBO J. 26, 2562–2574 (2007).

    Article  CAS  Google Scholar 

  10. Dez, C. & Tollervey, D. Ribosome synthesis meets the cell cycle. Curr. Opin. Microbiol. 7, 631–637 (2004).

    Article  CAS  Google Scholar 

  11. Peukert, K. et al. An alternative pathway for gene regulation by Myc. EMBO J. 16, 5672–5686 (1997).

    Article  CAS  Google Scholar 

  12. Wanzel, M. et al. Akt and 14–3-3ε regulate Miz1 to control cell-cycle arrest after DNA damage. Nature Cell Biol. 7, 30–41 (2005).

    Article  CAS  Google Scholar 

  13. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biol. 3, 392–399. (2001).

    Article  CAS  Google Scholar 

  14. Seoane, J., Le, H. V. & Massague, J. Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002).

    Article  CAS  Google Scholar 

  15. Dai, M. S. et al. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol. Cell Biol. 24, 7654–7668 (2004).

    Article  CAS  Google Scholar 

  16. Lohrum, M. A., Ludwig, R. L., Kubbutat, M. H., Hanlon, M. & Vousden, K. H. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3, 577–587 (2003).

    Article  CAS  Google Scholar 

  17. Jin, A., Itahana, K., O'Keefe, K. & Zhang, Y. Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol. Cell Biol. 24, 7669–7680 (2004).

    Article  CAS  Google Scholar 

  18. Colombo, E., Marine, J. C., Danovi, D., Falini, B. & Pelicci, P. G. Nucleophosmin regulates the stability and transcriptional activity of p53. Nature Cell Biol. 4, 529–533 (2002).

    Article  CAS  Google Scholar 

  19. Dhar, S. K., Lynn, B. C., Daosukho, C. & St Clair, D. K. Identification of nucleophosmin as an NF-κB co-activator for the induction of the human SOD2 gene. J. Biol. Chem. 279, 28209–28219 (2004).

    Article  CAS  Google Scholar 

  20. Herold, S. et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol. Cell. 10, 509–521 (2002).

    Article  CAS  Google Scholar 

  21. Yu, Y. et al. Nucleophosmin is essential for ribosomal protein L5 nuclear export. Mol. Cell Biol. 26, 3798–3809 (2006).

    Article  CAS  Google Scholar 

  22. Colombo, E. et al. Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol. Cell Biol. 25, 8874–8886 (2005).

    Article  CAS  Google Scholar 

  23. Salghetti, S. E., Muratani, M., Wijnen, H., Futcher, B. & Tansey, W. P. Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. Proc. Natl Acad. Sci. USA 97, 3118–3123 (2000).

    Article  CAS  Google Scholar 

  24. Colombo, E. et al. Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant. Cancer Res. 66, 3044–3050 (2006).

    Article  CAS  Google Scholar 

  25. Liu, Q. R. & Chan, P. K. Formation of nucleophosmin/B23 oligomers requires both the amino- and the carboxyl-terminal domains of the protein. Eur. J. Biochem. 200, 715–721 (1991).

    Article  CAS  Google Scholar 

  26. Warner, J. R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440 (1999).

    Article  CAS  Google Scholar 

  27. Grummt, I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17, 1691–1702 (2003).

    Article  CAS  Google Scholar 

  28. Marechal, V., Elenbaas, B., Piette, J., Nicolas, J. C. & Levine, A. J. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol. Cell Biol. 14, 7414–7420 (1994).

    Article  CAS  Google Scholar 

  29. Dai, M. S., Arnold, H., Sun, X. X., Sears, R. & Lu, H. Inhibition of c-Myc activity by ribosomal protein L11. EMBO J. 26, 3332–3345 (2007).

    Article  CAS  Google Scholar 

  30. Bilanges, B. et al. Tuberous sclerosis complex proteins 1 and 2 control serum-dependent translation in a TOP-dependent and -independent manner. Mol. Cell Biol. 27, 5746–5764 (2007).

    Article  CAS  Google Scholar 

  31. Grisendi, S., Mecucci, C., Falini, B. & Pandolfi, P. P. Nucleophosmin and cancer. Nature Rev. Cancer 6, 493–505 (2006).

    Article  CAS  Google Scholar 

  32. Zeller, K. I. et al. Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation. J. Biol. Chem. 276, 48285–48291 (2001).

    Article  CAS  Google Scholar 

  33. Pelletier, C. L. et al. TSC1 sets the rate of ribosome export and protein synthesis through nucleophosmin translation. Cancer Res. 67, 1609–1617 (2007).

    Article  CAS  Google Scholar 

  34. Rubbi, C. P. & Milner, J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 22, 6068–6077 (2003).

    Article  CAS  Google Scholar 

  35. Itahana, K. et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol. Cell 12, 1151–1164 (2003).

    Article  CAS  Google Scholar 

  36. Bertwistle, D., Sugimoto, M. & Sherr, C. J. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol. Cell Biol. 24, 985–996 (2004).

    Article  CAS  Google Scholar 

  37. Korgaonkar, C. et al. Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol. Cell Biol. 25, 1258–1271 (2005).

    Article  CAS  Google Scholar 

  38. den Besten, W., Kuo, M. L., Williams, R. T. & Sherr, C. J. Myeloid leukemia-associated nucleophosmin mutants perturb p53-dependent and independent activities of the Arf tumor suppressor protein. Cell Cycle 4, 1593–1598 (2005).

    Article  CAS  Google Scholar 

  39. Sugimoto, M., Kuo, M. L., Roussel, M. F. & Sherr, C. J. Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol. Cell 11, 415–424 (2003).

    Article  CAS  Google Scholar 

  40. Chin, L., Pomerantz, J. & DePinho, R. A. The INK4a/ARF tumor suppressor: one gene-two products-two pathways. Trends Biochem. Sci. 23, 291–296 (1998).

    Article  CAS  Google Scholar 

  41. Chen, D. et al. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121, 1071–1083 (2005).

    Article  CAS  Google Scholar 

  42. Adhikary, S. et al. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123, 409–421 (2005).

    Article  CAS  Google Scholar 

  43. Zeng, Y. X., Somasundaram, K. & el-Deiry, W. S. AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nature Genet. 15, 78–82 (1997).

    Article  CAS  Google Scholar 

  44. Bouchard, C. et al. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev. 15, 2042–2047. (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Deutsche Forschungsgemeinschaft through the Transregio 17 (Ras-dependent Pathways in Human Tumorigenesis) and the Research Group Chromatin-mediated Biological Decisions. The authors thank Katrien Berns and Rene Bernards for help with retroviral cloning techniques and Bianca Jebavy and Doris Dobrin for excellent technical support.

Author information

Authors and Affiliations

Authors

Contributions

M.W., A.C.R and D.K.K. performed the experiments; E.C. and P.-G.P provided reagents and advice; M.W. and M.E. analysed the data and planned the project.

Corresponding author

Correspondence to Martin Eilers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, S7, S8 and Supplementary Table S1 (PDF 1507 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanzel, M., Russ, A., Kleine-Kohlbrecher, D. et al. A ribosomal protein L23-nucleophosmin circuit coordinates Miz1 function with cell growth. Nat Cell Biol 10, 1051–1061 (2008). https://doi.org/10.1038/ncb1764

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing