Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal

Abstract

Transforming growth fazctor-β (TGFβ) family members regulate many developmental and pathological events through Smad transcriptional modulators. How nuclear accumulation of Smad is coupled to the transcriptional machinery is poorly understood. Here we demonstrate that in response to TGFβ stimulation the transcriptional regulator TAZ binds heteromeric Smad2/3–4 complexes and is recruited to TGFβ response elements. In human embryonic stem cells TAZ is required to maintain self-renewal markers and loss of TAZ leads to inhibition of TGFβ signalling and differentiation into a neuroectoderm lineage. In the absence of TAZ, Smad2/3–4 complexes fail to accumulate in the nucleus and activate transcription. Furthermore, TAZ, which itself engages in shuttling, dominantly controls Smad nucleocytoplasmic localization and can be retained in the nucleus by transcriptional co-factors such as ARC105, a component of the Mediator complex. TAZ thus defines a hierarchical system regulating Smad nuclear accumulation and coupling to the transcriptional machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TAZ interacts with Smad2/3–Smad4 heteromeric complexes.
Figure 2: TAZ is required for TGFβ-mediated transcription.
Figure 3: TAZ is required to maintain hESC pluripotency.
Figure 4: TAZ is required for TGFβ-dependent Smad nuclear accumulation.
Figure 5: The TAZ coiled-coil domain mediates Smad binding.
Figure 6: TAZ functions dominantly to control Smad activity.
Figure 7: TAZ and ARC105 form a complex to mediate the TGFβ-dependent nuclear localization of Smads.
Figure 8: A model for the function of TAZ in Smad signalling.

Similar content being viewed by others

References

  1. Siegel, P.M. & Massague, J. Cytostatic and apoptotic actions of TGFβ in homeostasis and cancer. Nature Rev. Cancer 3, 807–821 (2003).

    Article  CAS  Google Scholar 

  2. Feng, X.H. & Derynck, R. Specificity and versatility in TGFβ signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    Article  CAS  Google Scholar 

  3. Attisano, L. & Wrana, J.L. Signal transduction by the TGFβ superfamily. Science 296, 1646–1647 (2002).

    Article  CAS  Google Scholar 

  4. Ying, Q.L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).

    Article  CAS  Google Scholar 

  5. James, D., Levine, A.J., Besser, D. & Hemmati-Brivanlou, A. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132, 1273–1282 (2005).

    Article  CAS  Google Scholar 

  6. Vallier, L., Alexander, M. & Pedersen, R.A. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118, 4495–4509 (2005).

    Article  CAS  Google Scholar 

  7. Kurisaki, A., Kose, S., Yoneda, Y., Heldin, C.H. & Moustakas, A. Transforming growth factor-β induces nuclear import of Smad3 in an importin-β1 and Ran-dependent manner. Mol. Biol. Cell 12, 1079–1091 (2001).

    Article  CAS  Google Scholar 

  8. Xiao, Z., Liu, X., Henis, Y.I. & Lodish, H.F. A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proc. Natl Acad. Sci. USA 97, 7853–7858 (2000).

    Article  CAS  Google Scholar 

  9. Xu, L. et al. Msk is required for nuclear import of TGFβ/BMP-activated Smads. J. Cell Biol. 178, 981–994 (2007).

    Article  CAS  Google Scholar 

  10. Kurisaki, A. et al. The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Mol. Cell Biol. 26, 1318–1332 (2006).

    Article  CAS  Google Scholar 

  11. Xu, L., Alarcon, C., Col, S. & Massague, J. Distinct domain utilization by Smad3 and Smad4 for nucleoporin interaction and nuclear import. J. Biol. Chem. 278, 42569–42577 (2003).

    Article  CAS  Google Scholar 

  12. Xu, L., Kang, Y., Col, S. & Massague, J. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFβ signaling complexes in the cytoplasm and nucleus. Mol. Cell 10, 271–282 (2002).

    Article  CAS  Google Scholar 

  13. Inman, G.J., Nicolas, F.J. & Hill, C.S. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGFβ receptor activity. Mol. Cell 10, 283–294 (2002).

    Article  CAS  Google Scholar 

  14. Watanabe, M., Masuyama, N., Fukuda, M. & Nishida, E. Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep. 1, 176–182 (2000).

    Article  CAS  Google Scholar 

  15. Hoodless, P.A. et al. Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus. Dev. Biol. 207, 364–379 (1999).

    Article  CAS  Google Scholar 

  16. Liu, F., Pouponnot, C. & Massague, J. Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional complexes. Genes Dev. 11, 3157–3167 (1997).

    Article  CAS  Google Scholar 

  17. Nicolas, F.J., De Bosscher, K., Schmierer, B. & Hill, C.S. Analysis of Smad nucleocytoplasmic shuttling in living cells. J. Cell Sci. 117, 4113–4125 (2004).

    Article  CAS  Google Scholar 

  18. Schmierer, B. & Hill, C.S. Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor β-dependent nuclear accumulation of Smads. Mol. Cell Biol. 25, 9845–9858 (2005).

    Article  CAS  Google Scholar 

  19. Macias-Silva, M. et al. MADR2 is a substrate of the TGFβ receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87, 1215–1224 (1996).

    Article  CAS  Google Scholar 

  20. Nakao, A. et al. TGFβ receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 16, 5353–5362 (1997).

    Article  CAS  Google Scholar 

  21. Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307, 1621–1625 (2005).

    Article  CAS  Google Scholar 

  22. Hong, J.H. & Yaffe, M.B. TAZ: a β-catenin-like molecule that regulates mesenchymal stem cell differentiation. Cell Cycle 5, 176–179 (2006).

    Article  CAS  Google Scholar 

  23. Hong, J.H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074–1078 (2005).

    Article  CAS  Google Scholar 

  24. Kowanetz, M., Valcourt, U., Bergstrom, R., Heldin, C.H. & Moustakas, A. Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor β and bone morphogenetic protein. Mol. Cell Biol. 24, 4241–4254 (2004).

    Article  CAS  Google Scholar 

  25. Nakao, A. et al. Identification of Smad7, a TGFβ-inducible antagonist of TGFβ signalling. Nature 389, 631–635 (1997).

    Article  CAS  Google Scholar 

  26. Westerhausen, D.R., Jr., Hopkins, W.E. & Billadello, J.J. Multiple transforming growth factor-β-inducible elements regulate expression of the plasminogen activator inhibitor type-1 gene in Hep G2 cells. J. Biol. Chem. 266, 1092–1100 (1991).

    CAS  PubMed  Google Scholar 

  27. Cui, C.B., Cooper, L.F., Yang, X., Karsenty, G. & Aukhil, I. Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ. Mol. Cell Biol. 23, 1004–1013 (2003).

    Article  CAS  Google Scholar 

  28. Nagarajan, R.P., Zhang, J., Li, W. & Chen, Y. Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J. Biol. Chem. 274, 33412–33418 (1999).

    Article  CAS  Google Scholar 

  29. Sirard, C. et al. Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor β-related signaling. J. Biol. Chem. 275, 2063–2070 (2000).

    Article  CAS  Google Scholar 

  30. von Both, I. et al. Foxh1 is essential for development of the anterior heart field. Dev. Cell 7, 331–345 (2004).

    Article  CAS  Google Scholar 

  31. Waldrip, W.R., Bikoff, E.K., Hoodless, P.A., Wrana, J.L. & Robertson, E.J. Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell 92, 797–808 (1998).

    Article  CAS  Google Scholar 

  32. Izzi, L. et al. Foxh1 recruits Gsc to negatively regulate Mixl1 expression during early mouse development. EMBO J. (2007).

    Google Scholar 

  33. Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129–1155 (2005).

    Article  CAS  Google Scholar 

  34. Peerani, R. et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J. 26, 4744–4755 (2007).

    Article  CAS  Google Scholar 

  35. Smith, J.R. et al. Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev. Biol. 313, 107–117 (2008).

    Article  CAS  Google Scholar 

  36. Souchelnytskyi, S. et al. Phosphorylation of Ser 465 and Ser 467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-β signaling. J. Biol. Chem. 272, 28107–28115 (1997).

    Article  CAS  Google Scholar 

  37. Abdollah, S. et al. TβRI phosphorylation of Smad2 on Ser 465 and Ser 467 is required for Smad2-Smad4 complex formation and signaling. J. Biol. Chem. 272, 27678–27685 (1997).

    Article  CAS  Google Scholar 

  38. Murakami, M. et al. Transcriptional activity of Pax3 is co-activated by TAZ. Biochem. Biophys. Res. Commun. 339, 533–539 (2006).

    Article  CAS  Google Scholar 

  39. Kanai, F. et al. TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 19, 6778–6791 (2000).

    Article  CAS  Google Scholar 

  40. Kato, Y., Habas, R., Katsuyama, Y., Naar, A.M. & He, X. A component of the ARC/Mediator complex required for TGF-β/Nodal signalling. Nature 418, 641–646 (2002).

    Article  CAS  Google Scholar 

  41. Myers, L.C. & Kornberg, R.D. Mediator of transcriptional regulation. Annu. Rev. Biochem. 69, 729–749 (2000).

    Article  CAS  Google Scholar 

  42. Murakami, M., Nakagawa, M., Olson, E.N. & Nakagawa, O. A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc. Natl Acad. Sci. USA 102, 18034–18039 (2005).

    Article  CAS  Google Scholar 

  43. Schneider, R. et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nature Cell Biol. 6, 73–77 (2004).

    Article  CAS  Google Scholar 

  44. Baker, J.C. & Harland, R.M. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev. 10, 1880–1889 (1996).

    Article  CAS  Google Scholar 

  45. Cook, P.R. The organization of replication and transcription. Science 284, 1790–1795 (1999).

    Article  CAS  Google Scholar 

  46. Lin, X. et al. PPM1A functions as a Smad phosphatase to terminate TGFβ signaling. Cell 125, 915–928 (2006).

    Article  CAS  Google Scholar 

  47. Labbe, E., Silvestri, C., Hoodless, P.A., Wrana, J.L. & Attisano, L. Smad2 and Smad3 positively and negatively regulate TGFβ-dependent transcription through the forkhead DNA-binding protein FAST2. Mol. Cell 2, 109–120 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank L. Attisano and R. Bremner for critical review and helpful discussions, A. Nagy for the CA1 hES cells and M. Barrios-Rodiles for expertise with LUMIER. This work was supported by funds from Genome Canada through the Ontario Genomics Institute and the Canadian Institutes of Health Research (J.W.L., CIHR Grant number MT 12860; P.W.Z., CIHR Grant number MOP-57885) and the National Cancer Institute of Canada with funds from the Canadian Cancer Society. X.V. is supported by a National Cancer Institute of Canada fellowship. J.L.W. is a CRC Chair and an International Scholar of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

X.V. and J.L.W. designed and wrote the paper; X.V carried out most of the experiments; R.S. performed the mESC experiments; R.P. and B.M.R. performed the hESC knockdown experiments and cellomics analysis in P.W.Z.'s lab; P.S.T. carried out the knockdown experiments in NIH3T3 cells and helped with other experiments; J.D. carried out the initial follow-up to the LUMIER screen; M.B.Y. and P.W.Z. contributed reagents and discussion.

Corresponding author

Correspondence to Jeffrey L. Wrana.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6 and Supplementary Table 1 (PDF 2301 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varelas, X., Sakuma, R., Samavarchi-Tehrani, P. et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol 10, 837–848 (2008). https://doi.org/10.1038/ncb1748

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1748

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing