Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inactivation of Cdh1 by synergistic action of Cdk1 and polo kinase is necessary for proper assembly of the mitotic spindle

Abstract

Separation of duplicated centrosomes (spindle-pole bodies or SPBs in yeast) is a crucial step in the biogenesis of the mitotic spindle. In vertebrates, centrosome separation requires the BimC family kinesin Eg5 and the activities of Cdk1 and polo kinase; however, the roles of these kinases are not fully understood. In Saccharomyces cerevisiae, SPB separation also requires activated Cdk1 and the plus-end kinesins Cin8 (homologous to vertebrate Eg5) and Kip1. Here we report that polo kinase has a role in the separation of SPBs. We show that adequate accumulation of Cin8 and Kip1 requires inactivation of the anaphase-promoting complex-activator Cdh1 through sequential phosphorylation by Cdk1 and polo kinase. In this process, Cdk1 functions as a priming kinase in that Cdk1-mediated phosphorylation creates a binding site for polo kinase,which further phosphorylates Cdh1. Thus, Cdh1 inactivation through the synergistic action of Cdk1 and polo kinase provides a new model for inactivation of cell-cycle effectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ectopic expression of Cdc5 causes hyperphosphorylation of Cdh1 and SPB separation.
Figure 2: Ectopic expression of Cdc5 causes spindle assembly in cdc34-1 cells.
Figure 3: Phosphorylation of Cdh1 by Cdc5 requires priming by Cdc28.
Figure 4: Phosphorylation of Cdh1 by Cdc28 and Cdc5.
Figure 5: Absence of Cdc5 delays assembly of short spindle.
Figure 6: Functional redundancy between Cdc5 and APCCdh1-inhibitor Acm1 in SPB separation and involvement of Cdc5 in nuclear export of Cdh1.
Figure 7: Cdc5 is unstable in 1NM-PP1 treated cdc28-as1 cells.

Similar content being viewed by others

References

  1. Zimmerman, W., Sparks, C. A., & Doxsey, S. J. Amorphous no longer: the centrosome comes into focus. Curr. Opin. Cell Biol. 11, 122–128 (1999).

    Article  CAS  Google Scholar 

  2. Nigg, E. A. Origins and consequences of centrosome aberrations in human cancers. Int. J. Cancer 119, 2717–2723 (2006).

    Article  CAS  Google Scholar 

  3. Sterns, T. Centrosome duplication: a centriolar pas de deux. Cell 105, 417–420 (2001).

    Article  Google Scholar 

  4. Jaspersen, S. L. & Winey, M. The budding yeast spindle pole body: structure, duplication and function. Annu. Rev. Cell. Dev. Biol. 20, 1–28 (2004).

    Article  CAS  Google Scholar 

  5. Blangy, A. et al. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159–1169 (1995).

    Article  CAS  Google Scholar 

  6. Lane, H. A. & Nigg, E. A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of centrosomes. J. Cell Biol. 135, 1701–1713 (1996).

    Article  CAS  Google Scholar 

  7. Hoyt, M. A., He, L., Loo, K. K. & Saunders, W. S. Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly. J. Cell Biol. 118, 109–120 (1992).

    Article  CAS  Google Scholar 

  8. Lim, H. H., Goh, P. Y. & Surana, U. Spindle pole body separation in Saccharomyces cerevisiae requires dephosphorylation of the tyrosine 19 residue of Cdc28. Mol. Cell Biol. 16, 6385–6397 (1996).

    Article  CAS  Google Scholar 

  9. Crasta, K., Huang, P., Morgan, G., Winey, M. & Surana, U. Cdk1 regulates centrosome separation by restraining proteolysis of microtubule-associated proteins. EMBO J. 25, 2551–2563 (2006).

    Article  CAS  Google Scholar 

  10. Fitch, I. et al. Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell 3, 805–818 (1992).

    Article  CAS  Google Scholar 

  11. Bishop, A. C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  Google Scholar 

  12. Bartholomew, C. R. et al. Cdc5 interacts with the Wee1 kinase in budding yeast. Mol. Cell. Biol. 21, 4949–4959 (2001).

    Article  CAS  Google Scholar 

  13. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721–1724 (1998).

    Article  CAS  Google Scholar 

  14. Hall, M. C., Warren, E. N. & Borchers, C. H. Multi-kinase phosphorylation of the APC/C activator Cdh1 revealed by mass spectrometry. Cell Cycle 3, 1278–1284 (2004).

    Article  CAS  Google Scholar 

  15. Elia, A. E. H., Cantley, L. C. & Yaffe, M. B. Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299, 1228–1231 (2003).

    Article  CAS  Google Scholar 

  16. Nakajima, H., Toyoshima-Morimoto, F., Taniguchi, E. & Nishida, E. Identification of a consensus motif for Plk (polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate. J. Biol. Chem. 278, 25277–25280 (2003).

    Article  CAS  Google Scholar 

  17. Surana, U. et al. The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65, 145–161 (1991).

    Article  CAS  Google Scholar 

  18. Yeh, E. et al. Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Sacchromyces cerevisiae. J. Cell Biol. 130, 687–700 (1995).

    Article  CAS  Google Scholar 

  19. Martinez, J. S., Jeong, D-E, Choi, E., Billings, B. M. & Hall, M. C. Acm1 is a negative regulator of the Cdh1-dependent anaphase-promoting complex/cyclosome in budding yeast. Mol. Cell. Biol. 26, 9162–9176 (2006).

    Article  CAS  Google Scholar 

  20. Dial, J. M., Petrotchenko, E. V. & Borchers, C. H. Inhibition of APCCdh1 activity by Cdh1/ Acm1/ Bmh1 ternary complex formation. J. Biol. Chem. 282, 5237–5248 (2007).

    Article  CAS  Google Scholar 

  21. Jaquenoud, M., van Drogen, F. & Peter, M. Cell cycle-dependent nuclear export of Cdh1p may contribute to the inactivation of APC/CCdh1. EMBO J. 21, 6515–6526 (2002).

    Article  CAS  Google Scholar 

  22. Charles, J. F. et al. The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae. Curr. Biol. 8, 497–507 (1998).

    Article  CAS  Google Scholar 

  23. Castro, A., Bernis, C., Vigneron, S., Labbe, J.-C. & Lorca, T. The anaphase-promoting complex: a key factor in the regulation of cell cycle. Oncogene 24, 314–325 (2005).

    Article  CAS  Google Scholar 

  24. Yeong, F. M., Lim, H. H., Wang, Y. & Surana, U. Early expressed Clb proteins allow accumulation of mitotic cyclin by inactivating proteolytic machinery during S phase. Mol. Cell Biol. 21, 5071–5081 (2001).

    Article  CAS  Google Scholar 

  25. van Vugt, M. A. & Medema, R. H. Getting in and out of mitosis with Polo-like kinase-1. Oncogene 24, 2844–2859 (2005).

    Article  CAS  Google Scholar 

  26. Dai, W., Wang, Q. & Traganos, F. Polo-like kinases and centrosome regulation. Oncogene 21, 6195–6200 (2002).

    Article  CAS  Google Scholar 

  27. Yeong, F. M., Lim, H. H., Padmashree C. G. & Surana, U. Exit from mitosis in budding yeast: biphasic inactivation of the Cdk1–cyclin B2 mitotic kinase and the role of Cdc20. Mol. Cell 5, 501–511 (2000).

    Article  CAS  Google Scholar 

  28. Winey, M. et al. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 129, 1601–1615 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Janet Meehl and Michele Jones for their invaluable help with some of the experiments. We wish to thank David Morgan, Wolfgang Zachariae, Simonetta Piatti, Matthias Peter, Christopher Hardy and Kyung Lee for plasmids and strains, Mark Hall for valuable advice and Chee Peng Ng for help with electron microscopy. The work in MW laboratory was supported by NIH grant GM51312. U.S. is an adjunct faculty member of the Department of Pharmacology, National University of Singapore. The U.S. lab is supported by the Biomedical Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.

Author information

Authors and Affiliations

Authors

Contributions

K.C. and L.H.H. performed all experiments; T.H.G. and M.W. carried out the electron microscopy analysis; U.S. and K.C. planned the project and analysed the data.

Corresponding author

Correspondence to Uttam Surana.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5 and Supplementary Table S1 (PDF 604 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crasta, K., Lim, H., Giddings, T. et al. Inactivation of Cdh1 by synergistic action of Cdk1 and polo kinase is necessary for proper assembly of the mitotic spindle. Nat Cell Biol 10, 665–675 (2008). https://doi.org/10.1038/ncb1729

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing