Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability

Abstract

STAT (Signal transducer and activator of transcription) is a potent transcription factor and its aberrant activation by phosphorylation is associated with human cancers1,2,3,4. We have shown previously that overactivation of JAK, which phosphorylates STAT5,6, disrupts heterochromatin formation globally in Drosophila melanogaster7. However, it remains unclear how this effect is mediated and whether STAT is involved. Here, we demonstrate that Drosophila STAT (STAT92E) is involved in controlling heterochromatin protein 1 (HP1) distribution and heterochromatin stability. We found, unexpectedly, that loss of STAT92E, had the same effects as overactivation of JAK in disrupting heterochromatin formation and heterochromatic gene silencing, whereas overexpression of STAT92E had the opposite effects. We have further shown that the unphosphorylated or 'transcriptionally inactive' form of STAT92E is localized on heterochromatin in association with HP1, and is required for stabilizing HP1 localization and histone H3 Lys 9 methylation (H3mK9) . However, activation by phosphorylation reduces heterochromatin-associated STAT92E, causing HP1 displacement and heterochromatin destabilization. Thus, reducing levels of unphosphorylated STAT92E, either by loss of STAT92E or increased phosphorylation, causes heterochromatin instability. These results suggest that activation of STAT by phosphorylation controls both access to chromatin and activity of the transcription machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STAT92E is required for heterochromatic gene silencing.
Figure 2: STAT92E levels control heterochromatin abundance and HP1 localization.
Figure 3: STAT92E colocalizes and physically associates with HP1.
Figure 4: Only unphosphorylated STAT92E is localized on heterochromatin.
Figure 5: Protein-synthesis-independent heterochromatin disruption following STAT92E phosphorylation.

Similar content being viewed by others

References

  1. Bromberg, J. Stat proteins and oncogenesis. J. Clin. Invest. 109, 1139–1142 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yu, H. & Jove, R. The STATs of cancer — new molecular targets come of age. Nature Rev. Cancer 4, 97–105 (2004).

    Article  CAS  Google Scholar 

  3. Aaronson, D. S. & Horvath, C. M. A road map for those who know JAK-STAT. Science 296, 1653–1655 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Darnell, Jr, J. E., Kerr, I. M. & Stark, G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Harrison, D. A., Binari, R., Nahreini, T. S., Gilman, M. & Perrimon, N. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 14, 2857–2865 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luo, H., Hanratty, W. P. & Dearolf, C. R. An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. EMBO J. 14, 1412–1420 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi, S. et al. JAK signaling globally counteracts heterochromatic gene silencing. Nature Genet. 38, 1071–1076 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Hanratty, W. P. & Dearolf, C. R. The Drosophila Tumorous-lethal hematopoietic oncogene is a dominant mutation in the hopscotch locus. Mol. Gen. Genet. 238, 33–37 (1993).

    CAS  PubMed  Google Scholar 

  9. Betz, A. & Darnell, Jr, J. E. A Hopscotch-chromatin connection. Nature Genet. 38, 977–979 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Arbouzova, N. I. & Zeidler, M. P. JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. Development 133, 2605–2616 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Hou, S. X., Zheng, Z., Chen, X. & Perrimon, N. The Jak/STAT pathway in model organisms. Emerging roles in cell movement. Dev. Cell 3, 765–778 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Grewal, S. I. & Elgin, S. C. Heterochromatin: new possibilities for the inheritance of structure. Curr. Opin. Genet. Dev. 12, 178–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. James, T. C. et al. Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur. J. Cell Biol. 50, 170–180 (1989).

    CAS  PubMed  Google Scholar 

  14. Li, Y., Danzer, J. R., Alvarez, P., Belmont, A. S. & Wallrath, L. L. Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development 130, 1817–1824 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Kaminker, J. S. et al. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol. 3, 0084.1–0084.20 (2002).

    Article  Google Scholar 

  16. Sun, F. L. et al. cis-Acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four. Mol. Cell Biol. 24, 8210–8220 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Lucia, F., Ni, J. Q., Vaillant, C. & Sun, F. L. HP1 modulates the transcription of cell-cycle regulators in Drosophila melanogaster. Nucleic Acids Res. 33, 2852–2858 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kellum, R., Raff, J. W. & Alberts, B. M. Heterochromatin protein 1 distribution during development and during the cell cycle in Drosophila embryos. J. Cell Sci. 108, 1407–1418 (1995).

    CAS  PubMed  Google Scholar 

  19. Shareef, M. M. et al. Drosophila heterochromatin protein 1 (HP1)/origin recognition complex (ORC) protein is associated with HP1 and ORC and functions in heterochromatin-induced silencing. Mol. Biol. Cell 12, 1671–1685 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, L., McBride, K. M. & Reich, N. C. STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-α3. Proc. Natl Acad. Sci. USA 102, 8150–8155 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Karsten, P., Plischke, I., Perrimon, N. & Zeidler, M. P. Mutational analysis reveals separable DNA binding and trans-activation of Drosophila STAT92E. Cell Signal. 18, 819–829 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Thiru, A. et al. Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. EMBO J. 23, 489–499 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, J. et al. Patterns and functions of STAT activation during Drosophila embryogenesis. Mech. Dev. 120, 1455–1468 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, W. X., Agaisse, H., Mathey-Prevot, B. & Perrimon, N. Differential requirement for STAT by gain-of-function and wild-type receptor tyrosine kinase Torso in Drosophila. Development 129, 4241–4248. (2002).

    Google Scholar 

  25. Sweitzer, S. M., Calvo, S., Kraus, M. H., Finbloom, D. S. & Larner, A. C. Characterization of a Stat-like DNA binding activity in Drosophila melanogaster. J. Biol. Chem. 270, 16510–16513 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Dorer, D. R. & Henikoff, S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1002 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Ronsseray, S., Boivin, A. & Anxolabehere, D. P-Element repression in Drosophila melanogaster by variegating clusters of P-lacZ-white transgenes. Genetics 159, 1631–1642 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Birchler, S. Elgin, S. Hou, L. Wallrath, M. Zeidler, G. Reuter, the Developmental Hybridoma Bank (Iowa), the Bloomington Drosophila Stock Center for Drosophila strains and reagents and H. Land and D. Bohmann for helpful comments on the manuscript. This study was supported, in part, by grants from the National Institutes of Health (R01GM65774; R01GM077046), an American Cancer Society Research Scholar Grant (RSG-06-196-01-TBE) and a Leukemia & Lymphoma Society Research Scholar Grant (1087-08) to W.X.L.

Author information

Authors and Affiliations

Authors

Contributions

W. X. L. conceived and designed the experiments; S. S., K. L., D. G., S. J. L., P. D. and S.-J. Y. performed the experiments and analysed the data; W. X. L. wrote the paper.

Corresponding author

Correspondence to Willis X. Li.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6 and S7 (PDF 877 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, S., Larson, K., Guo, D. et al. Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability. Nat Cell Biol 10, 489–496 (2008). https://doi.org/10.1038/ncb1713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing