Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8

Abstract

The formation and function of cilia involves the movement of intraflagellar transport (IFT) particles underneath the ciliary membrane, along axonemal microtubules1,2. Although this process has been studied extensively, its molecular basis remains incompletely understood. For example, it is unknown how the IFT particle interacts with transmembrane proteins. To study the IFT particle further, we examined elipsa, a locus characterized by mutations that cause particularly early ciliogenesis defects in zebrafish. We show here that elipsa encodes a coiled-coil polypeptide that localizes to cilia. Elipsa protein binds to Ift20, a component of IFT particles, and Elipsa homologue in Caenorhabditis elegans, DYF-11, translocates in sensory cilia, similarly to the IFT particle. This indicates that Elipsa is an IFT particle polypeptide. In the context of zebrafish embryogenesis, Elipsa interacts genetically with Rabaptin5, a well-studied regulator of endocytosis, which in turn interacts with Rab8, a small GTPase, known to localize to cilia. We show that Rabaptin5 binds to both Elipsa and Rab8, suggesting that these proteins provide a bridging mechanism between the IFT particle and protein complexes that assemble at the ciliary membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The elipsa phenotype and gene structure.
Figure 2: Localization of Elipsa and IFT proteins.
Figure 3: Elipsa binding partners.
Figure 4: Rabaptin5 interacts genetically with Elipsa and functions in ciliogenesis.
Figure 5: Rabaptin5 interacts with Rab8 genetically and biochemically.

Similar content being viewed by others

References

  1. Kozminski, K. G., Beech, P. L. & Rosenbaum, J. L. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J. Cell Biol. 131, 1517–1527 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Rosenbaum, J.L. & Witman, G. B. Intraflagellar transport. Nature Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  Google Scholar 

  3. Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629–633 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Eggenschwiler, J. T. & Anderson, K. V. Cilia and developmental signaling. Annu. Rev. Cell Dev. Biol. 23, 345–373 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsujikawa, M. & Malicki, J. Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron 42, 703–716 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Orozco, J. T. et al. Movement of motor and cargo along cilia. Nature 398, 674 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Qin, H. et al. Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane. Curr. Biol. 15, 1695–1699 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Malicki, J. et al. Mutations affecting development of the zebrafish retina. Development 123, 263–273 (1996).

    CAS  PubMed  Google Scholar 

  9. Doerre, G. & Malicki, J. Genetic analysis of photoreceptor cell development in the zebrafish retina. Mechanisms of Development 110, 125–138. (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Avidor-Reiss, T. et al. Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117, 527–539 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Vitale, G. et al. Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5. EMBO J. 17, 1941–1951 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stenmark, H., Vitale, G., Ullrich, O. & Zerial, M. Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83, 423–432 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Starich, T. A. et al. Mutations affecting the chemosensory neurons of Caenorhabditis elegans. Genetics 139, 171–188 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Perkins, L. A., Hedgecock, E. M., Thomson, J. N. & Culotti, J. G. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev. Biol. 117, 456–487 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Ou, G. et al. Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles. Mol. Biol. Cell 18, 1554–1569 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kunitomo, H. & Iino, Y. Caenorhabditis elegans DYF-11, an orthologue of mammalian Traf3ip1/MIP-T3, is required for sensory cilia formation. Genes Cells 13, 13–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Snow, J. J. et al. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nature Cell Biol. 6, 1109–1113 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Grosshans, B. L., Ortiz, D. & Novick, P. Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl Acad. Sci. USA 103, 11821–11827 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. McBride, H. M. et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98, 377–386 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Moritz, O. L. et al. Mutant rab8 impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Mol. Biol. Cell 12, 2341–2351 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nachury, M. V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Tan, P. L. et al. Loss of Bardet Biedl syndrome proteins causes defects in peripheral sensory innervation and function. Proc. Natl Acad. Sci. USA 104, 17524–17529 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Follit, J. A., Tuft, R. A., Fogarty, K. E. & Pazour, G. J. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol. Biol. Cell 17, 3781–3792 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ling, L. & Goeddel, D. V. MIP-T3, a novel protein linking tumor necrosis factor receptor-associated factor 3 to the microtubule network. J. Biol. Chem. 275, 23852–23860 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Baker, S. A., Freeman, K., Luby-Phelps, K., Pazour, G. J. & Besharse, J. C. IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia. J. Biol. Chem. 278, 34211–34218 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Jekely, G. & Arendt, D. Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 28, 191–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Malicki, J., Jo, H., Wei, X., Hsiung, M. & Pujic, Z. Analysis of gene function in the zebrafish retina. Methods 28, 427–438. (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Brand, M. et al. Mutations affecting development of the midline and general body shape during zebrafish embryogenesis. Development 123, 129–142 (1996).

    CAS  PubMed  Google Scholar 

  29. Colosimo, M. E. et al. Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types. Curr. Biol. 14, 2245–2251 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Sengupta, P., Chou, J. H. & Bargmann, C. I. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84, 899–909 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Colbert, H. A., Smith, T. L. & Bargmann, C. I. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17, 8259–8269 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Rolls, M. M., Hall, D. H., Victor, M., Stelzer, E. H. & Rapoport, T. A. Targeting of rough endoplasmic reticulum membrane proteins and ribosomes in invertebrate neurons. Mol. Biol. Cell 13, 1778–1791 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Omori, Y. & Malicki, J. oko, meduzy and related crumbs genes are determinants of apical cell features in the vertebrate embryo. Curr. Biol. 16, 945–957 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Veraksa, A., Bauer, A. & Artavanis-tsakonas, S. Analyzing protein complexes in Drosophila with tandem affinity purification–mass spectrometry. Dev. Dynamics 232, 827–834 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Tomer Avidor-Reiss, Lila Solnica-Krezel, Francesca Pignoni and Anneke Den Hollander provided helpful comments on an earlier version of this manuscript. We also thank Zac Pujic for help with mapping the elipsa locus; the Pignoni lab and Andria Schibler for excellent technical assistance; Joel Rosenbaum, Michael Rosbash and Emi Nagoshi for help with the imaging of nematode cilia; Iain Drummond for the anti-PC2 antibody; Marino Zerial and Juan Bonifacino for rabaptin clones; David Papermaster and James Goldenring for rab8 clones. These studies were supported by the National Eye Institute RO1 EY11882 and RO1 EY016859 awards (to J. M.) the National Institute on Deafness and other Communication Disorders RO1 DC005103 award (to J. M.), P30 NS44232 core grant to Brandeis University, National Institute of General Medical Sciences RO1 56223 (to P. S.), as well as a Knights Templar Pediatric Ophthalmology research grant (to Y. O.) and a core grant for Vision Research P30EY14104 to the Harvard Department of Ophthalmology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarema Malicki.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6 and Supplementary Table S1, S2, S3 (PDF 1624 kb)

Supplementary Information

Supplementary Movies 1 (MOV 7096 kb)

Supplementary Information

Supplementary Movies 2 (MOV 5176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omori, Y., Zhao, C., Saras, A. et al. elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat Cell Biol 10, 437–444 (2008). https://doi.org/10.1038/ncb1706

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1706

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing