Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation

Abstract

Rhythmic production of vertebral precursors, the somites, causes bilateral columns of embryonic segments to form. This process involves a molecular oscillator — the segmentation clock — whose signal is translated into a spatial, periodic pattern by a complex signalling gradient system within the presomitic mesoderm (PSM). In mouse embryos, Wnt signalling has been implicated in both the clock and gradient mechanisms, but how the Wnt pathway can perform these two functions simultaneously remains unclear. Here, we use a yellow fluorescent protein (YFP)-based, real-time imaging system in mouse embryos to demonstrate that clock oscillations are independent of β-catenin protein levels. In contrast, we show that the Wnt-signalling gradient is established through a nuclear β-catenin protein gradient in the posterior PSM. This gradient of nuclear β-catenin defines the size of the oscillatory field and controls key aspects of PSM maturation and segment formation, emphasizing the central role of Wnt signalling in this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conditional stabilization of β-catenin in mouse PSM disrupts somite formation.
Figure 2: Expansion of posterior PSM identity in β-catenindel(ex3)/+ mutant embryos.
Figure 3: Anterior shift of determination front in β-catenindel(ex3)/+ mutant embryos.
Figure 4: Dynamic expression of Wnt and Notch cyclic genes is maintained in β-catenindel(ex3)/+ mutant PSM.
Figure 5: Real-time imaging of Lfng oscillations in control and β-catenindel(ex3)/+ mutant embryos.

Similar content being viewed by others

References

  1. Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquié, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesiss. Cell 91, 639–648 (1997).

    Article  CAS  Google Scholar 

  2. Aulehla, A. et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev. Cell 4, 395–406 (2003).

    Article  CAS  Google Scholar 

  3. Dequeant, M. L. et al. A complex oscillating network of signalling genes underlies the mouse segmentation clock. Science 314, 1595–1598 (2006).

    Article  CAS  Google Scholar 

  4. Nakaya, M.A. et al. Wnt3a links left–right determination with segmentation and anteroposterior axis elongation. Development 132, 5425–5436 (2005).

    Article  CAS  Google Scholar 

  5. Satoh, W., Gotoh, T., Tsunematsu, Y., Aizawa, S. & Shimono, A. Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis. Development 133, 989–999 (2006).

    Article  CAS  Google Scholar 

  6. Dubrulle, J., McGrew, M. J. & Pourquie, O. FGF signalling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219–232 (2001).

    Article  CAS  Google Scholar 

  7. Diez del Corral, R. et al. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40, 65–79 (2003).

    Article  CAS  Google Scholar 

  8. Saga, Y., Hata, N., Koseki, H. & Taketo, M. M. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev. 11, 1827–1839 (1997).

    Article  CAS  Google Scholar 

  9. Morimoto, M., Takahashi, Y., Endo, M. & Saga, Y. The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 435, 354–359 (2005).

    Article  CAS  Google Scholar 

  10. Lustig, B. et al. Negative feedback loop of Wnt signalling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell. Biol. 22, 1184–1193 (2002).

    Article  CAS  Google Scholar 

  11. Jho, E. H. et al. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).

    Article  CAS  Google Scholar 

  12. Brault, V. et al. Inactivation of the β-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, 1253–1264 (2001).

    CAS  PubMed  Google Scholar 

  13. Gordon, M. D. & Nusse, R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429–22433 (2006).

    Article  CAS  Google Scholar 

  14. Maretto, S. et al. Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proc. Natl Acad. Sci. USA 100, 3299–3304 (2003).

    Article  CAS  Google Scholar 

  15. White, P. H., Farkas, D. R., McFadden, E. E. & Chapman, D. L. Defective somite patterning in mouse embryos with reduced levels of Tbx6. Development 130, 1681–1690 (2003).

    Article  CAS  Google Scholar 

  16. Wittler, L. et al. Expression of Msgn1 in the presomitic mesoderm is controlled by synergism of WNT signalling and Tbx6. EMBO Rep. 8, 784–789 (2007).

    Article  CAS  Google Scholar 

  17. Hofmann, M. et al. WNT signaling, in synergy with T/TBX6, controls Notch signaling by regulating Dll1 expression in the presomitic mesoderm of mouse embryos. Genes Dev. 18, 2712–2717 (2004).

    Article  CAS  Google Scholar 

  18. Galceran, J., Sustmann, C., Hsu, S. C., Folberth, S. & Grosschedl, R. LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis. Genes Dev. 18, 2718–2723 (2004).

    Article  CAS  Google Scholar 

  19. Roehl, H. & Nusslein-Volhard, C. Zebrafish pea3 and erm are general targets of FGF8 signaling. Curr. Biol. 11, 503–507 (2001).

    Article  CAS  Google Scholar 

  20. Burgess, R., Rawls, A., Brown, D., Bradley, A. & Olson, E. N. Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature 384, 570–573 (1996).

    Article  CAS  Google Scholar 

  21. Niederreither, K., Subbarayan, V., Dolle, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genet. 21, 444–448 (1999).

    Article  CAS  Google Scholar 

  22. Nakajima, Y., Morimoto, M., Takahashi, Y., Koseki, H. & Saga, Y. Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2. Development 133, 2517–2525 (2006).

    Article  CAS  Google Scholar 

  23. Bessho, Y., Miyoshi, G., Sakata, R. & Kageyama, R. Hes7: a bHLH-type repressor gene regulated by Notch and expressed in the presomitic mesoderm. Genes Cells 6, 175–185 (2001).

    Article  CAS  Google Scholar 

  24. Morales, A. V., Yasuda, Y. & Ish-Horowicz, D. Periodic lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to notch signaling. Dev. Cell 3, 63–74 (2002).

    Article  CAS  Google Scholar 

  25. Cole, S. E., Levorse, J. M., Tilghman, S. M. & Vogt, T. F. Clock regulatory elements control cyclic expression of lunatic fringe during somitogenesis. Dev. Cell 3, 75–84 (2002).

    Article  CAS  Google Scholar 

  26. Sawada, A. et al. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development 128, 4873–4880 (2001).

    CAS  PubMed  Google Scholar 

  27. Delfini, M. C., Dubrulle, J., Malapert, P., Chal, J. & Pourquie, O. Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. Proc. Natl Acad. Sci. USA 102, 11343–11348 (2005).

    Article  CAS  Google Scholar 

  28. Morkel, M. et al. β-catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development 130, 6283–6294 (2003).

    Article  CAS  Google Scholar 

  29. Niwa, Y. et al. The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and notch signaling in the somite segmentation clock. Dev. Cell 13, 298–304 (2007).

    Article  CAS  Google Scholar 

  30. Wahl, M. B., Deng, C., Lewandoski, M. & Pourquie, O. FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis. Development 134, 4033–4041 (2007).

    Article  CAS  Google Scholar 

  31. Hecht, A. & Kemler, R. Curbing the nuclear activities of β-catenin. Control over Wnt target gene expression. EMBO Rep 1, 24–28 (2000).

    Article  CAS  Google Scholar 

  32. Wang, S. & Jones, K. A. CK2 controls the recruitment of Wnt regulators to target genes in vivo. Curr. Biol. 16, 2239–2244 (2006).

    Article  CAS  Google Scholar 

  33. Masamizu, Y. et al. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc. Natl Acad. Sci. USA 103, 1313–1318 (2006).

    Article  CAS  Google Scholar 

  34. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  35. Jones, E. A. et al. Dynamic in vivo imaging of postimplantation mammalian embryos using whole embryo culture. Genesis 34, 228–235 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Pourquié laboratory for discussions and comments on the manuscript, S. Esteban for artwork and J. Chatfield for manuscript editing. We thank the Stowers Institute Core Facilities, especially D. Dukes and M. Durnin in the Laboratory Animal Service and S. Beckham in the Histology Facility for their excellent technical assistance. A.A was funded by the Swiss Foundation for medical-biological grants, Swiss National Science Foundation. This research was supported by Stowers Institute for Medical Research. O.P. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Contributions

A.A. designed, performed and analysed the experiments; established the real-time imaging and wrote the manuscript. W.W. developed software to analyse the real-time imaging data. V.B. contributed in the initial phase of this project to the real-time imaging experiments. M.W., C.D., M.T. and M.L. provided genetically modified mice. O.P. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Olivier Pourquié.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5 and Supplementary Methods (PDF 1218 kb)

Supplementary Information

Supplementary Movie 1 (MOV 8018 kb)

Supplementary Information

Supplementary Movie 2 (MOV 7484 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aulehla, A., Wiegraebe, W., Baubet, V. et al. A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat Cell Biol 10, 186–193 (2008). https://doi.org/10.1038/ncb1679

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1679

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing