Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation

Abstract

The RAS–ERK pathway is known to play a pivotal role in differentiation, proliferation and tumour progression. Here, we show that Erk downregulates Forkhead box O 3a (FOXO3a) by directly interacting with and phosphorylating FOXO3a at Ser 294, Ser 344 and Ser 425, which consequently promotes cell proliferation and tumorigenesis. The ERK-phosphorylated FOXO3a degrades via an MDM2-mediated ubiquitin-proteasome pathway. However, the non-phosphorylated FOXO3a mutant is resistant to the interaction and degradation by murine double minute 2 (MDM2), thereby resulting in a strong inhibition of cell proliferation and tumorigenicity. Taken together, our study elucidates a novel pathway in cell growth and tumorigenesis through negative regulation of FOXO3a by RAS–ERK and MDM2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Erk suppresses FOXO3a stability and induces its nuclear exclusion.
Figure 2: Erk interacts with and phosphorylates FOXO3a in vitro and in vivo.
Figure 3: MDM2 is required for Erk-mediated FOXO3a degradation.
Figure 4: Phosphorylation of FOXO3a by Erk facilitates MDM2-mediated FOXO3a degradation through an ubiquitin-proteasome pathway.
Figure 5: FOXO3a3A, but not FOXO3a3D, inhibits tumorigenesis and induces apoptosis.
Figure 6: ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  2. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004).

    Article  CAS  Google Scholar 

  3. Yoon, S. & Seger, R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24, 21–44 (2006).

    Article  CAS  Google Scholar 

  4. Kolch, W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nature Rev. Mol. Cell Biol. 6, 827–837 (2005).

    Article  CAS  Google Scholar 

  5. Thompson, N. & Lyons, J. Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. Curr. Opin. Pharmacol. 5, 350–356 (2005).

    Article  CAS  Google Scholar 

  6. Scholl, F. A., Dumesic, P. A. & Khavari, P. A. Effects of active MEK1 expression in vivo. Cancer Lett. 230, 1–5 (2005).

    Article  CAS  Google Scholar 

  7. Weinberg, R. A. Fas oncogenes and the molecular mechanisms of carcinogenesis. Blood 64, 1143–1145 (1984).

    CAS  PubMed  Google Scholar 

  8. Giehl, K. Oncogenic Ras in tumour progression and metastasis. Biol. Chem. 386, 193–205 (2005).

    CAS  PubMed  Google Scholar 

  9. Asada, S. et al. Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal. 19, 519–527 (2007).

    Article  CAS  Google Scholar 

  10. Greer, E. L. & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005).

    Article  CAS  Google Scholar 

  11. Finnberg, N. & El-Deiry, W. S. Activating FOXO3a, NF-kappaB and p53 by targeting IKKs: an effective multi-faceted targeting of the tumor-cell phenotype? Cancer Biol. Ther. 3, 614–616 (2004).

    Article  CAS  Google Scholar 

  12. Burgering, B. M. & Kops, G. J. Cell cycle and death control: long live Forkheads. Trends Biochem. Sci. 27, 352–360 (2002).

    Article  CAS  Google Scholar 

  13. Tran, H., Brunet, A., Griffith, E. C. & Greenberg, M. E. The many forks in FOXO's road. Sci STKE RE5 (2003).

  14. Dijkers, P. F. et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol. Cell Biol. 20, 9138–9148 (2000).

    Article  CAS  Google Scholar 

  15. Schmidt, M. et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol. Cell Biol. 22, 7842–7852 (2002).

    Article  CAS  Google Scholar 

  16. Yang, J. Y., Xia, W. & Hu, M. C. Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. Int. J. Oncol. 29, 643–648 (2006).

    PubMed  PubMed Central  Google Scholar 

  17. Hu, M. C. et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237 (2004).

    Article  CAS  Google Scholar 

  18. Hu, M. C. & Hung, M. C. Role of IkappaB kinase in tumorigenesis. Future Oncol. 1, 67–78 (2005).

    Article  CAS  Google Scholar 

  19. Potente, M. et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 115, 2382–2392 (2005).

    Article  CAS  Google Scholar 

  20. Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    Article  CAS  Google Scholar 

  21. Plas, D. R. & Thompson, C. B. Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J. Biol. Chem. 278, 12361–12366 (2003).

    Article  CAS  Google Scholar 

  22. Bond, G. L., Hu, W. & Levine, A. J. MDM2 is a central node in the p53 pathway: 12 years and counting. Curr. Cancer Drug Targets 5, 3–8 (2005).

    Article  CAS  Google Scholar 

  23. Zhou, B. P. et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nature Cell Biol. 3, 973–982 (2001).

    Article  CAS  Google Scholar 

  24. Uchida, C. et al. Enhanced Mdm2 activity inhibits pRB function via ubiquitin-dependent degradation. EMBO J. 24, 160–169 (2005).

    Article  CAS  Google Scholar 

  25. Yang, J. Y. et al. MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol. Cell Biol. 26, 7269–7282 (2006).

    Article  CAS  Google Scholar 

  26. Ries, S. et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103, 321–330 (2000).

    Article  CAS  Google Scholar 

  27. Phelps, M., Phillips, A., Darley, M. & Blaydes, J. P. MEK–ERK signaling controls Hdm2 oncoprotein expression by regulating hdm2 mRNA export to the cytoplasm. J. Biol. Chem. 280, 16651–16658 (2005).

    Article  CAS  Google Scholar 

  28. Shaw, R. J. & Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424–430 (2006).

    Article  CAS  Google Scholar 

  29. Ding, Q. et al. Erk associates with and primes GSK-3β for its inactivation resulting in upregulation of β-catenin. Mol. Cell 19, 159–170 (2005).

    Article  CAS  Google Scholar 

  30. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  Google Scholar 

  31. Honda, R. & Yasuda, H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19, 1473–1476 (2000).

    Article  CAS  Google Scholar 

  32. Honda, R. & Yasuda, H. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18, 22–7 (1999).

    Article  CAS  Google Scholar 

  33. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).

    Article  CAS  Google Scholar 

  34. Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000).

    Article  CAS  Google Scholar 

  35. Lin, S. Y. et al. β-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc. Natl Acad. Sci. USA 97, 4262–4266 (2000).

    Article  CAS  Google Scholar 

  36. Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  Google Scholar 

  37. Storz, P., Doppler, H. & Toker, A. Protein kinase D mediates mitochondrion-to-nucleus signaling and detoxification from mitochondrial reactive oxygen species. Mol. Cell Biol. 25, 8520–8530 (2005).

    Article  CAS  Google Scholar 

  38. Terry, D. E., Umstot, E. & Desiderio, D. M. Optimized sample-processing time and peptide recovery for the mass spectrometric analysis of protein digests. J. Am. Soc. Mass Spectrom. 15, 784–794 (2004).

    Article  CAS  Google Scholar 

  39. Lee, D. F. et al. IKKβ suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130, 440–455 (2007).

    Article  CAS  Google Scholar 

  40. Hirosawa, M., Hoshida, M., Ishikawa, M. & Toya, T. MASCOT: multiple alignment system for protein sequences based on three-way dynamic programming. Comput. Appl. Biosci. 9, 161–167 (1993).

    CAS  PubMed  Google Scholar 

  41. Chang, J. Y. et al. The tumor suppression activity of E1A in HER-2/neu-overexpressing breast cancer. Oncogene 14, 561–568 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank: P. P. Pandolfi, D.-H. Yan, J. Chen, T. Sakai, P. Coffer and A. Toker for providing expression plasmids; G. Lozano for the knockout MEF cells; M. C.-H. Hu for the p-FOXO3a (644) antibodies; Y. Wei, J.-M. Hsu, S. Zhang, J.-F. Lee and C.-T. Chen for technical support; W. Kaelin, M. Van Dyke and D. Sarbasov for critical comments on the manuscript; and J. C. Cheng and the Department of Scientific Publications, M. D. Anderson Cancer Center for editing the manuscript. This work was supported by National Institutes of Health (NIH) grant P01 CA 099031, MDACC SPORE in Breast Cancer CA116199 and The University of Texas M. D. Anderson Cancer Center support grant CA16672, and was partially supported by the National Breast Cancer Foundation, Inc., Patel Memorial Breast Cancer Research Foundation, Breast Cancer Research Foundation grant and Kadoorie Charitable Foundations.

Author information

Authors and Affiliations

Authors

Contributions

J.-Y.Y. and M.-C.H. designed the experiments and wrote the manuscript. M.-C.H. supervised the research. J.-Y.Y. and C.S.Z. performed most of the experiments. W.X. performed the immunohistochemistry staining and contributed to the results shown in Tables 1 and 2. X.X. and J.-Y.L. performed the animal experiments. H.Y., Q.D., C.-J.C., W.-C.W., H.-P.K., D.-F.L., L.-Y.L., H.-C.L. and X.C. assisted with experiments for the revision of the manuscript. C.-C.L., F.-J.T. and C.-H.T were responsible for the LC-MC/MS data. H.H. performed the statistical analysis. All authors contributed to discussions of the manuscript.

Corresponding author

Correspondence to Mien-Chie Hung.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, s3, S4, S5, and S6 (PDF 521 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, JY., Zong, C., Xia, W. et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10, 138–148 (2008). https://doi.org/10.1038/ncb1676

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1676

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing