Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

AK2 activates a novel apoptotic pathway through formation of a complex with FADD and caspase-10

Abstract

Mitochondrial proteins function as essential regulators in apoptosis. Here, we show that mitochondrial adenylate kinase 2 (AK2) mediates mitochondrial apoptosis through the formation of an AK2–FADD–caspase-10 (AFAC10) complex. Downregulation of AK2 attenuates etoposide- or staurosporine-induced apoptosis in human cells, but not that induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL) or Fas ligand (FasL). During intrinsic apoptosis, AK2 translocates to the cytoplasm, whereas this event is diminished in Apaf-1 knockdown cells and prevented by Bcl-2 or Bcl-XL. Addition of purified AK2 protein to cell extracts first induces activation of caspase-10 via FADD and subsequently caspase-3 activation, but does not affect caspase-8. AFAC10 complexes are detected in cells undergoing intrinsic cell death and AK2 promotes the association of caspase-10 with FADD. In contrast, AFAC10 complexes are not detected in several etoposide-resistant human tumour cell lines. Taken together, these results suggest that, acting in concert with FADD and caspase-10, AK2 mediates a novel intrinsic apoptotic pathway that may be involved in tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Downregulation of AK2 expression desensitizes cells to etoposide and staurosporine-mediated apoptosis.
Figure 2: Kinetics of the release of mitochondrial AK2 into the cytosol and its regulation by Bcl-2 or Bcl-XL during apoptosis.
Figure 3: AK2 induces the activation of caspase-10 via FADD in a cell-free system.
Figure 4: Formation of AK2–FADD–caspase-10 ternary protein complexes.
Figure 5: Deficiency of AK2–FADD–caspase-10 complexes and resistance to etoposide-induced apoptosis in Hep3B hepatocellular carcinoma cells.

Similar content being viewed by others

References

  1. Chinnaiyan, A. M., O'Rourke, K., Tewari, M. & Dixit, V. M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505–512 (1995).

    Article  CAS  Google Scholar 

  2. Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H. & Peter, M. E. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995).

    Article  CAS  Google Scholar 

  3. Zhang, J. & Winoto, A. A mouse Fas-associated protein with homology to the human Mort1/FADD protein is essential for Fas-induced apoptosis. Mol. Cell. Biol. 16, 2756–2763 (1996).

    Article  CAS  Google Scholar 

  4. Micheau, O., Solary, E., Hammann, A. & Dimanche-Boitrel, M. T. Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J. Biol. Chem. 274, 7987–7992 (1999).

    Article  CAS  Google Scholar 

  5. Shimada, K., Matsuyoshi, S., Nakamura, M., Ishida, E., Kishi, M. & Konishi, N. Phosphorylation of Fas-associated death domain contributes to enhancement of etoposide-induced apoptosis in prostate cancer cells. Jpn. J. Cancer Res. 93, 1164–1174 (2002).

    Article  CAS  Google Scholar 

  6. Kawahara, A., Ohsawa, Y., Matsumura, H., Uchiyama, Y. & Nagata, S. Caspase-independent cell killing by Fas-associated protein with death domain. J. Cell Biol. 143, 1353–1360 (1998).

    Article  CAS  Google Scholar 

  7. Matsumura, H., Shimizu, Y., Ohsawa, Y., Kawahara, A., Uchiyama, Y. & Nagata, S. Necrotic death pathway in Fas receptor signaling. J. Cell Biol. 151, 1247–1256 (2000).

    Article  CAS  Google Scholar 

  8. Scaffidi, C., Volkland, J., Blomberg, I., Hoffmann, I., Krammer, P. H. & Peter, M. E. Phosphorylation of FADD/ MORT1 at serine 194 and association with a 70-kDa cell cycle-regulated protein kinase. J. Immunol. 164, 1236–1242 (2000).

    Article  CAS  Google Scholar 

  9. Hua, Z. C., Sohn, S. J., Kang, C., Cado, D. & Winoto, A. A function of Fas-associated death domain protein in cell cycle progression localized to a single amino acid at its C-terminal region. Immunity 18, 513–521 (2003).

    Article  CAS  Google Scholar 

  10. Alappat, E. C. et al. Phosphorylation of FADD at serine 194 by CKIα regulates its nonapoptotic activities. Mol. Cell 19, 321–332 (2005).

    Article  CAS  Google Scholar 

  11. Zhang, J., Cado, D., Chen, A., Kabra, N. H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    Article  CAS  Google Scholar 

  12. Yeh, W. C. et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954–1958 (1998).

    Article  CAS  Google Scholar 

  13. Wang, J. et al. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98, 47–58 (1999).

    Article  CAS  Google Scholar 

  14. Teitz, T. et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nature Med. 6, 529–535 (2000).

    Article  CAS  Google Scholar 

  15. Shin, M. S. et al. Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 99, 4094–4099 (2002).

    Article  CAS  Google Scholar 

  16. Single, B., Leist, M. & Nicotera, P. Simultaneous release of adenylate kinase and cytochrome c in cell death. Cell Death Differ. 5, 1001–1003 (1998).

    Article  CAS  Google Scholar 

  17. Samali, A., Cai, J., Zhivotovsky, B., Jones, D. P. & Orrenius, S. Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J. 18, 2040–2048 (1999).

    Article  CAS  Google Scholar 

  18. Kluck, R. M. et al. The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J. Cell Biol. 147, 809–822 (1999).

    Article  CAS  Google Scholar 

  19. Wang, J., Chun, H. J., Wong, W., Spencer, D. M. & Lenardo, M. J. Caspase-10 is an initiator caspase in death receptor signaling. Proc. Natl Acad. Sci. USA 98, 13884–13888 (2001).

    Article  CAS  Google Scholar 

  20. Schlauderer, G. J. & Schulz, G. E. The structure of bovine mitochondrial adenylate kinase: comparison with isoenzymes in other compartments. Protein Sci. 5, 434–441 (1996).

    Article  CAS  Google Scholar 

  21. Noma, T., Song, S., Yoon, Y. S., Tanaka, S. & Nakazawa, A. cDNA cloning and tissue-specific expression of the gene encoding human adenylate kinase isozyme 2. Biochim. Biophys. Acta. 1395, 34–39 (1998).

    Article  CAS  Google Scholar 

  22. Chandra, D., Choy, G., Deng, X., Bhatia, B., Daniel, P. & Tang, D. G. Association of active caspase 8 with the mitochondrial membrane during apoptosis: potential roles in cleaving BAP31 and caspase 3 and mediating mitochondrion–endoplasmic reticulum cross talk in etoposide-induced cell death. Mol. Cell. Biol. 24, 6592–6607 (2004).

    Article  CAS  Google Scholar 

  23. Micheau, O., Solary, E., Hammann, A. & Dimanche-Boitrel, M. T. Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J. Biol. Chem. 274, 7987–7992 (1999).

    Article  CAS  Google Scholar 

  24. Kim, P. K. et al. Hepatocyte Fas-associating death domain protein/mediator of receptor-induced toxicity (FADD/MORT1) levels increase in response to pro-apoptotic stimuli. J. Biol. Chem. 277, 38855–38862 (2002).

    Article  CAS  Google Scholar 

  25. Park, S. J., Wu, C. H., Gordon, J. D., Zhong, X., Emami, A. & Safa, A. R. Taxol induces caspase-10-dependent apoptosis. J. Biol. Chem. 279, 51057–51067 (2004).

    Article  CAS  Google Scholar 

  26. Filomenko, R. et al. Caspase-10 involvement in cytotoxic drug-induced apoptosis of tumor cells. Oncogene 25, 7635–7645 (2006).

    Article  CAS  Google Scholar 

  27. Fujita, E., Egashira, J., Urase, K., Kuida, K. & Momoi, T. Caspase-9 processing by caspase-3 via a feedback amplification loop in vivo. Cell Death Differ. 8, 335–344 (2001).

    Article  CAS  Google Scholar 

  28. Zou, H. et al. Regulation of the Apaf-1/Caspase-9 apoptosome by Caspase-3 and XIAP. J. Biol. Chem. 278, 8091–8098 (2003).

    Article  CAS  Google Scholar 

  29. Lassus, P., Opitz-Arraya, X. & Lazebnik, Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297, 1352–1354 (2002).

    Article  CAS  Google Scholar 

  30. Slee, E. A. et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8 and -10 in a caspase-9-dependent manner. J. Cell Biol. 144, 281–292 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank: J. Blenis (Harvard University, Boston, MA) for providing Jurkat cells (A3, I2-1, I9-2); J. Yuan (Harvard University) for HeLa/Bcl-2, HeLa/Bcl-XL and HeLa/CrmA cells; and H. D. Ryoo (New York University, New York, NY) for critical reading of this manuscript. J.-O. P. and S.-h. H. were in part supported by the Korean Research Foundation (KRF-2005-201-C00039) and by the BK21 programme. This work was supported by grants from the Functional Human Genome Project (FG06-2-7) and the Brain Research Center of the 21st Century Frontier Research Programme and the Ubiquitome project funded by the Korea Science and Engineering Foundation (KOSEF) of the Korea government (MOST).

Author information

Authors and Affiliations

Authors

Contributions

H.J.L., J.O.P. and H.J.K. performed flow cytometry analysis, IP assays and cell line characterization. H.J.L., Y.O., S.H.H., H.K., D.H.C., H.N.W. and J.H.N. performed siRNA generation and fractionation and RT–PCR analysis. H.J.L. and Y.J.J. performed in vitro pull-down assays. S.S. performed functional assays of AK2 and FADD in the mouse system. Hyo Joon Kim and K.S.K. performed antibody generation and mutagenesis. Y.K.J. guided the project and data interpretation. H.J.L. and Y.K.J. wrote the manuscript.

Corresponding author

Correspondence to Yong-Keun Jung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5 and Methods (PDF 5724 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HJ., Pyo, JO., Oh, Y. et al. AK2 activates a novel apoptotic pathway through formation of a complex with FADD and caspase-10. Nat Cell Biol 9, 1303–1310 (2007). https://doi.org/10.1038/ncb1650

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1650

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing