Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos

Abstract

The activation of Ras by the guanine nucleotide-exchange factor Son of sevenless (Sos) constitutes the rate-limiting step in the transduction process that links receptor tyrosine kinases to Ras-triggered intracellular signalling pathways. A prerequisite for the function of Sos in this context is its ligand-dependent membrane recruitment, and the prevailing model implicates both the Sos carboxy-terminal proline-rich motifs and amino-terminal pleckstrin homology (PH) domain in this process. Here, we describe a previously unrecognized pathway for the PH domain-dependent membrane recruitment of Sos that is initiated by the growth factor-induced generation of phosphatidic acid via the signalling enzyme phospholipase D2 (PLD2). Phosphatidic acid interacts with a defined site in the Sos PH domain with high affinity and specificity. This interaction is essential for epidermal growth factor (EGF)-induced Sos membrane recruitment and Ras activation. Our findings establish a crucial role for PLD2 in the coupling of extracellular signals to Sos-mediated Ras activation, and provide new insights into the spatial coordination of this activation event.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The PH domain of Sos (Sos-PH) binds to phosphatidic Acid (PA).
Figure 2: The interaction between Sos-PH and PA is essential for serum-induced Sos membrane recruitment and Sos-mediated Ras activation.
Figure 3: PLD2-mediated signalling is essential for Sos membrane recruitment and Sos-mediated Ras activation.
Figure 4: The transforming activity of Ras is potentiated by PLD2.

Similar content being viewed by others

References

  1. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  Google Scholar 

  2. Schlessinger, J. & Bar-Sagi, D. Activation of Ras and other signaling pathways by receptor tyrosine kinases. Cold Spring Harb. Symp. Quant. Biol. 59, 173–179 (1994).

    Article  CAS  Google Scholar 

  3. Wang, W. et al. The Grb2 binding domain of mSos1 is not required for downstream signal transduction. Nature Genet. 10, 294–300 (1995).

    Article  CAS  Google Scholar 

  4. Karlovich, C. A. et al. In vivo functional analysis of the Ras exchange factor son of sevenless. Science 268, 576–579 (1995).

    Article  CAS  Google Scholar 

  5. McCollam, L. et al. Functional roles for the pleckstrin and Dbl homology regions in the Ras exchange factor Son-of-sevenless. J. Biol. Chem. 270, 15954–15957 (1995).

    Article  CAS  Google Scholar 

  6. Qian, X., Vass, W. C., Papageorge, A. G., Anborgh, P. H. & Lowy, D. R. N terminus of Sos1 Ras exchange factor: critical roles for the Dbl and pleckstrin homology domains. Mol. Cell Biol. 18, 771–778 (1998).

    Article  CAS  Google Scholar 

  7. Byrne, J. L., Paterson, H. F. & Marshall, C. J. p21Ras activation by the guanine nucleotide exchange factor Sos, requires the Sos/Grb2 interaction and a second ligand-dependent signal involving the Sos N-terminus. Oncogene 13, 2055–2065 (1996).

    CAS  PubMed  Google Scholar 

  8. Lemmon, M. A. & Ferguson, K. M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 350, 1–18 (2000).

    Article  CAS  Google Scholar 

  9. Chen, R. H., Corbalan-Garcia, S. & Bar-Sagi, D. The role of the PH domain in the signal-dependent membrane targeting of Sos. EMBO J. 16, 1351–1359 (1997).

    Article  CAS  Google Scholar 

  10. Zheng, J. et al. The solution structure of the pleckstrin homology domain of human SOS1. A possible structural role for the sequential association of diffuse B cell lymphoma and pleckstrin homology domains. J. Biol. Chem. 272, 30340–30344 (1997).

    Article  CAS  Google Scholar 

  11. Kubiseski, T. J., Chook, Y. M., Parris, W. E., Rozakis-Adcock, M. & Pawson, T. High affinity binding of the pleckstrin homology domain of mSos1 to phosphatidylinositol (4,5)-bisphosphate. J. Biol. Chem. 272, 1799–1804 (1997).

    Article  CAS  Google Scholar 

  12. Karathanassis, D. et al. Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 21, 5057–5068 (2002).

    Article  CAS  Google Scholar 

  13. Stace, C. L. & Ktistakis, N. T. Phosphatidic acid- and phosphatidylserine-binding proteins. Biochim. Biophys. Acta. 1761, 913–926 (2006).

    Article  CAS  Google Scholar 

  14. Rizzo, M. A. et al. Phospholipase D and its product, phosphatidic acid, mediate agonist-dependent raf-1 translocation to the plasma membrane and the activation of the mitogen-activated protein kinase pathway. J. Biol. Chem. 274, 1131–1139 (1999).

    Article  CAS  Google Scholar 

  15. Park, J. W. Phosphatidic acid-induced translocation of cytosolic components in a cell-free system of NADPH oxidase: mechanism of activation and effect of diacylglycerol. Biochem. Biophys. Res. Commun. 229, 758–763 (1996).

    Article  CAS  Google Scholar 

  16. Rebecchi, M., Boguslavsky, V., Boguslavsky, L. & McLaughlin, S. Phosphoinositide-specific phospholipase C-delta 1: effect of monolayer surface pressure and electrostatic surface potentials on activity. Biochemistry 31, 12748–12753 (1992).

    Article  CAS  Google Scholar 

  17. Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A. & Chen, J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294, 1942–1945 (2001).

    Article  CAS  Google Scholar 

  18. de Rooij, J. & Bos, J. L. Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14, 623–625 (1997).

    Article  CAS  Google Scholar 

  19. Wang, X., Devaiah, S. P., Zhang, W. & Welti, R. Signaling functions of phosphatidic acid. Prog. Lipid Res. 45, 250–278 (2006).

    Article  CAS  Google Scholar 

  20. Colley, W. C. et al. Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol. 7, 191–201 (1997).

    Article  CAS  Google Scholar 

  21. Slaaby, R., Jensen, T., Hansen, H. S., Frohman, M. A. & Seedorf, K. PLD2 complexes with the EGF receptor and undergoes tyrosine phosphorylation at a single site upon agonist stimulation. J. Biol. Chem. 273, 33722–33727 (1998).

    Article  CAS  Google Scholar 

  22. Sung, T. -C. et al. Mutagenesis of Phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO J. 16, 4519–4530 (1997).

    Article  CAS  Google Scholar 

  23. Du, G., Huang, P., Liang, B. T. & Frohman, M. A. Phospholipase D2 localizes to the plasma membrane and regulates angiotensin II receptor endocytosis. Mol. Biol. Cell 15, 1024–1030 (2004).

    Article  CAS  Google Scholar 

  24. Bogdan, S. & Klambt, C. Epidermal growth factor receptor signaling. Curr Biol 11, R292–R295 (2001).

    Article  CAS  Google Scholar 

  25. Luo, J. Q. et al. RalA interacts directly with the Arf-responsive, PIP2-dependent phospholipase D1. Biochem. Biophys. Res. Commun. 235, 854–859 (1997).

    Article  CAS  Google Scholar 

  26. Foster, D. A. & Xu, L. Phospholipase D in cell proliferation and cancer. Mol. Cancer Res. 1, 789–800 (2003).

    CAS  PubMed  Google Scholar 

  27. Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nature Rev. Cancer 3, 459–465 (2003).

    Article  CAS  Google Scholar 

  28. Fiucci, G. et al. Changes in phospholipase D isoform activity and expression in multidrug-resistant human cancer cells. Int. J. Cancer 85, 882–888 (2000).

    Article  CAS  Google Scholar 

  29. Welsh, C. J., Yeh, G. C. & Phang, J. M. Increased phospholipase D activity in multidrug resistant breast cancer cells. Biochem. Biophys. Res. Commun. 202, 211–217 (1994).

    Article  CAS  Google Scholar 

  30. Zhao, Y. et al. Increased activity and intranuclear expression of phospholipase D2 in human renal cancer. Biochem. Biophys. Res. Commun. 278, 140–143 (2000).

    Article  CAS  Google Scholar 

  31. Rizzo, M. A., Shome, K., Watkins, S. C. & Romero, G. The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J. Biol. Chem. 275, 23911–23918 (2000).

    Article  CAS  Google Scholar 

  32. Corbalan-Garcia, S., Margarit, S. M., Galron, D., Yang, S. S. & Bar-Sagi, D. Regulation of Sos activity by intramolecular interactions. Mol. Cell Biol. 18, 880–886 (1998).

    Article  CAS  Google Scholar 

  33. Boykevisch, S. et al. Regulation of ras signaling dynamics by Sos-mediated positive feedback. Curr. Biol. 16, 2173–2179 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Bar-Sagi and Frohman laboratories, J. Kuriyan and H. Sondermann for helpful discussion, S. McLaughlin for help with the lipid vesicle binding assay and L. Taylor for help with image capturing and analysis. This work was supported by research grants from National Institutes of Health to D.B.-S. (CA55360 and CA28146), G.D. (GM071475) and M.A.F. (DK64166 and GM71520), and a Scientist Development Grant from the American Heart Association to G.D. (0430096N).

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and D.B-S. conceived and designed the experiments. C.Z. performed the experiments. G.D. and M.A.F. designed, generated and provided PLD2 reagents. K.S. performed preliminary lipid-binding experiments.

Corresponding author

Correspondence to Dafna Bar-Sagi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 249 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, C., Du, G., Skowronek, K. et al. Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat Cell Biol 9, 707–712 (2007). https://doi.org/10.1038/ncb1594

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1594

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing