Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels

Abstract

Stromal interacting molecule 1 (STIM1) is a Ca2+ sensor that conveys the Ca2+ load of the endoplasmic reticulum to store-operated channels (SOCs) at the plasma membrane. Here, we report that STIM1 binds TRPC1, TRPC4 and TRPC5 and determines their function as SOCs. Inhibition of STIM1 function inhibits activation of TRPC5 by receptor stimulation, but not by La3+, suggesting that STIM1 is obligatory for activation of TRPC channels by agonists, but STIM1 is not essential for channel function. Through a distinct mechanism, STIM1 also regulates TRPC3 and TRPC6. STIM1 does not bind TRPC3 and TRPC6, and regulates their function indirectly by mediating the heteromultimerization of TRPC3 with TRPC1 and TRPC6 with TRPC4. TRPC7 is not regulated by STIM1. We propose a new definition of SOCs, as channels that are regulated by STIM1 and require the store depletion-mediated clustering of STIM1. By this definition, all TRPC channels, except TRPC7, function as SOCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of TRPC3 by STIM1.
Figure 2: STIM1-mediated interaction of TRPC3 with TRPC1.
Figure 3: Regulation of TRPC3 by STIM1 requires TRPC1.
Figure 4: Regulation of TRPC6 by STIM1.
Figure 5: Interaction of TRPC6 with TRPC4 mediates regulation of TRPC6 by STIM1.
Figure 6: STIM1 regulates TRPC5 but it is not obligatory for channel function.
Figure 7: TRPC7 is not regulated by STIM1.

Similar content being viewed by others

References

  1. Parekh, A. B. & Putney, J. W., Jr. Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005).

    Article  CAS  Google Scholar 

  2. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  Google Scholar 

  3. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223 (2006).

    Article  CAS  Google Scholar 

  4. Smyth, J. T. et al. Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim. Biophys. Acta. 1763, 1147–1160 (2006).

    Article  CAS  Google Scholar 

  5. Soboloff, J., Spassova, M. A., Dziadek, M. A. & Gill, D. L. Calcium signals mediated by STIM and Orai proteins — a new paradigm in inter-organelle communication. Biochim. Biophys. Acta 1763, 1161–1168 (2006).

    Article  CAS  Google Scholar 

  6. Mercer, J. C. et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J. Biol. Chem. 281, 24979–24990 (2006).

    Article  CAS  Google Scholar 

  7. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    Article  CAS  Google Scholar 

  8. Zhang, S. L. et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl Acad. Sci. USA 103, 9357–9362 (2006).

    Article  CAS  Google Scholar 

  9. Pedersen, S. F., Owsianik, G. & Nilius, B. TRP channels: an overview. Cell Calcium 38, 233–252 (2005).

    Article  CAS  Google Scholar 

  10. Takahashi, Y. et al. Essential role of the N-terminus of murine Orai1 in store-operated Ca2+ entry. Biochem. Biophys Res. Comm. 356, 45–52 (2007).

    Article  CAS  Google Scholar 

  11. Minke, B. TRP channels and Ca2+ signaling. Cell Calcium 40, 261–275 (2006).

    Article  CAS  Google Scholar 

  12. Kiselyov, K., Kim, J. Y., Zeng, W. & Muallem, S. Protein-protein interaction and functionTRPC channels. Pflugers Arch. 451, 116–124 (2005).

    Article  CAS  Google Scholar 

  13. Freichel, M. et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4−/− mice. Nature Cell Boil. 3, 121–127 (2001).

    Article  CAS  Google Scholar 

  14. Dietrich, A. et al. Increased vascular smooth muscle contractility in TRPC6−/− mice. Mol. Cell. Biol. 25, 6980–6989 (2005).

    Article  CAS  Google Scholar 

  15. Zagranichnaya, T. K., Wu, X. & Villereal, M. L. Endogenous TRPC1, TRPC3, and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells. J. Biol. Chem. 280, 29559–29569 (2005).

    Article  CAS  Google Scholar 

  16. Hofmann, T. et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259–263 (1999).

    Article  CAS  Google Scholar 

  17. Okada, T. et al. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. J. Biol. Chem. 274, 27359–27370 (1999).

    Article  CAS  Google Scholar 

  18. Kiselyov, K. et al. Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396, 478–482 (1998).

    Article  CAS  Google Scholar 

  19. Vazquez, G., Lievremont, J. P., St, J. B. G. & Putney, J. W., Jr. Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B lymphocytes. Proc. Natl Acad. Sci. USA 98, 11777–11782 (2001).

    Article  CAS  Google Scholar 

  20. Trebak, M., Bird, G. S., McKay, R. R. & Putney, J. W., Jr. Comparison of human TRPC3 channels in receptor-activated and store-operated modes. J. Biol. Chem. 277, 21617–21623 (2002).

    Article  CAS  Google Scholar 

  21. Boulay, G. Ca2+–calmodulin regulates receptor-operated Ca2+ entry activity of TRPC6 in HEK-293 cells. Cell Calcium 32, 201–207 (2002).

    Article  CAS  Google Scholar 

  22. Dietrich, A., Chubanov, V., Kalwa, H., Rost, B. R. & Gudermann, T. Cation channels of the transient receptor potential superfamily: Their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol. Therap. 112, 744–760 (2006).

    Article  CAS  Google Scholar 

  23. Lievremont, J. P., Bird, G. S. & Putney, J. W., Jr. Canonical transient receptor potential TRPC7 can function as both a receptor- and store-operated channel in HEK-293 cells. Am. J. Physiol. Cell Physiol. 287, C1709–C1716 (2004).

    Article  CAS  Google Scholar 

  24. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005).

    Article  CAS  Google Scholar 

  25. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    Article  CAS  Google Scholar 

  26. Wu, M. M., Buchanan, J., Luik, R. M. & Lewis, R. S. Ca2+store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006).

    Article  CAS  Google Scholar 

  27. Baba, Y. et al. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 103, 16704–16709 (2006).

    Article  CAS  Google Scholar 

  28. Stathopulos, P. B., Li, G. Y., Plevin, M. J., Ames, J. B. & Ikura, M. Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM Region. J. Biol. Chem. 281, 35855–35862 (2006).

    Article  CAS  Google Scholar 

  29. Soboloff, J. et al. Orai1 and STIM reconstitute store-operated calcium channel function. J. Biol. Chem. 281, 20661–20665 (2006).

    Article  CAS  Google Scholar 

  30. Peinelt, C. et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nature Cell Biol. 8, 771–773 (2006).

    Article  CAS  Google Scholar 

  31. Huang, G. N. et al. STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nature Cell Biol. 8, 1003–1010 (2006).

    Article  CAS  Google Scholar 

  32. Lopez, J. J., Salido, G. M., Pariente, J. A. & Rosado, J. A. Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J. Biol. Chem. 281, 28254–28264 (2006).

    Article  CAS  Google Scholar 

  33. Ong, H. L. et al. Dynamic assembly of TRPC1/STIM1/Orai1 ternary complex is involved in store operated calcium influx: Evidence for similarities in SOC and CRAC channel components. J. Biol. Chem. 282, 9105–9116 (2007).

    Article  CAS  Google Scholar 

  34. Wedel, B., Boyles, R. R., Putney, J. W. & Bird, G. S. Role of the store-operated calcium entry proteins, Stim1 and Orai1, in muscarinic-cholinergic receptor stimulated calcium oscillations in human embryonic kidney cells. J. Physiol. 579, 679–689 (2007).

    Google Scholar 

  35. Vazquez, G., Wedel, B. J., Trebak, M., St John Bird, G. & Putney, J. W., Jr. Expression level of the canonical transient receptor potential 3 (TRPC3) channel determines its mechanism of activation. J. Biol. Chem. 278, 21649–21654 (2003).

    Article  CAS  Google Scholar 

  36. Xu, X. Z., Li, H. S., Guggino, W. B. & Montell, C. Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 89, 1155–1164 (1997).

    Article  CAS  Google Scholar 

  37. Liu, X., Bandyopadhyay, B. C., Singh, B. B., Groschner, K. & Ambudkar, I. S. Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. J. Biol. Chem. 280, 21600–21606 (2005).

    Article  CAS  Google Scholar 

  38. Loessberg, P. A., Zhao, H. & Muallem, S. Synchronized oscillation of Ca2+ entry and Ca2+ release in agonist-stimulated AR42J cells. J. Biol. Chem. 266, 1363–1366 (1991).

    CAS  PubMed  Google Scholar 

  39. Kiselyov, K., Wang, X., Shin, D. M., Zang, W. & Muallem, S. Calcium signaling complexes in microdomains of polarized secretory cells. Cell Calcium 40, 451–459 (2006).

    Article  CAS  Google Scholar 

  40. Yeromin, A. V. et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226–229 (2006).

    Article  CAS  Google Scholar 

  41. Jung, S. et al. Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J. Biol. Chem. 278, 3562–3571 (2003).

    Article  CAS  Google Scholar 

  42. Vazquez, G., Bird, G. S., Mori, Y. & Putney, J. W., Jr. Native TRPC7 channel activation by an inositol trisphosphate receptor-dependent mechanism. J. Biol. Chem. 281, 25250–25258 (2006).

    Article  CAS  Google Scholar 

  43. Yuan, J. P. et al. Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114, 777–789 (2003).

    Article  CAS  Google Scholar 

  44. Kim, J. Y. et al. Homer 1 mediates store- and IP3Rs- dependent translocation and retrieval of TRPC3 to the plasma membrane. J. Biol. Chem. 281, 32540–32549 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y Mori for GFP–TRPC5, TRPC6 and TRPC7 plasmids. This work was supported in part by grant BGIA 06651924 from the Texas American Heart Association to W.Z., National Institutes of Health Grants DE12309 and DK38938 and the Ruth S. Harrell Professorship in Medical Research to S.M. and by the National Institute on Drug Abuse (NIDA; DA00266, DA10309) and the National Institute of Mental Health (NIMH; MH068830) to P.F.W.

Author information

Authors and Affiliations

Authors

Contributions

J.P.Y, W.Z and G.N.H performed and analysed the experiments. PF.W. and S.M. planned and analysed the experiments. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Paul F. Worley or Shmuel Muallem.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 711 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, J., Zeng, W., Huang, G. et al. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9, 636–645 (2007). https://doi.org/10.1038/ncb1590

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing