Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A functional genomic screen identifies a role for TAO1 kinase in spindle-checkpoint signalling

Abstract

Defects in chromosome–microtubule attachment trigger spindle-checkpoint activation and delay mitotic progression1,2. How microtubule attachment is sensed and integrated into the steps of checkpoint-signal amplification is poorly understood. In a functional genomic screen targeting human kinases and phosphatases, we identified a microtubule affinity-regulating kinase kinase, TAO1 (also known as MARKK) as an important regulator of mitotic progression, required for both chromosome congression and checkpoint-induced anaphase delay. TAO1 interacts with the checkpoint kinase BubR1 and promotes enrichment of the checkpoint protein Mad2 at sites of defective attachment, providing evidence for a regulatory step that precedes the proposed Mad2–Mad1 dependent checkpoint-signal amplification step3. We propose that the dual functions of TAO1 in regulating microtubule dynamics and checkpoint signalling may help to coordinate the establishment and monitoring of correct congression of chromosomes, thereby protecting genomic stability in human cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: shRNA screen identifies new candidate spindle-checkpoint kinases.
Figure 2: TAO1 kinase activity is elevated in mitosis and required for its checkpoint function.
Figure 3: TAO1-depleted cells display precocious anaphase onset and chromosome missegregation.
Figure 4: TAO1 kinase regulates chromosome congression in an Aurora-B independent manner.
Figure 5: TAO1 recruits Mad2 to unattached kinetochores and interacts with BubR1.

Similar content being viewed by others

References

  1. Bharadwaj, R. & Yu, H. The spindle checkpoint, aneuploidy, and cancer. Oncogene 23, 2016–2027 (2004).

    Article  CAS  Google Scholar 

  2. Taylor, S. S., Scott, M. I. & Holland, A. J. The spindle checkpoint: a quality control mechanism which ensures accurate chromosome segregation. Chromosome Res. 12, 599–616 (2004).

    Article  CAS  Google Scholar 

  3. Yu, H. Structural activation of Mad2 in the mitotic spindle checkpoint: the two-state Mad2 model versus the Mad2 template model. J. Cell Biol. 173, 153–157 (2006).

    Article  CAS  Google Scholar 

  4. Chan, G. K., Liu, S. T. & Yen, T. J. Kinetochore structure and function. Trends Cell Biol. 15, 589–598 (2005).

    Article  CAS  Google Scholar 

  5. Basto, R., Gomes, R. & Karess, R. E. Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila. Nature Cell Biol. 2, 939–943 (2000).

    Article  CAS  Google Scholar 

  6. Habu, T., Kim, S. H., Weinstein, J. & Matsumoto, T. Identification of a MAD2-binding protein, CMT2, and its role in mitosis. EMBO J. 21, 6419–6428 (2002).

    Article  CAS  Google Scholar 

  7. Lou, Y. et al. NEK2A interacts with MAD1 and possibly functions as a novel integrator of the spindle checkpoint signaling. J. Biol. Chem. 279, 20049–20057 (2004).

    Article  CAS  Google Scholar 

  8. Hutchison, M., Berman, K. S. & Cobb, M. H. Isolation of TAO1, a protein kinase that activates MEKs in stress-activated protein kinase cascades. J. Biol. Chem. 273, 28625–28632 (1998).

    Article  CAS  Google Scholar 

  9. Takenaka, K., Moriguchi, T. & Nishida, E. Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 280, 599–602 (1998).

    Article  CAS  Google Scholar 

  10. Mikhailov, A., Shinohara, M. & Rieder, C. L. Topoisomerase II and histone deacetylase inhibitors delay the G2/M transition by triggering the p38 MAPK checkpoint pathway. J. Cell Biol. 166, 517–526 (2004).

    Article  CAS  Google Scholar 

  11. Matsusaka, T. & Pines, J. Chfr acts with the p38 stress kinases to block entry to mitosis in mammalian cells. J. Cell Biol. 166, 507–516 (2004).

    Article  CAS  Google Scholar 

  12. Yustein, J. T. et al. Comparative studies of a new subfamily of human Ste20-like kinases: homodimerization, subcellular localization, and selective activation of MKK3 and p38. Oncogene 22, 6129–6141 (2003).

    Article  CAS  Google Scholar 

  13. Pines, J. Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol. 16, 55–63 (2006).

    Article  CAS  Google Scholar 

  14. Pinsky, B. A. & Biggins, S. The spindle checkpoint: tension versus attachment. Trends Cell Biol. 15, 486–493 (2005).

    Article  CAS  Google Scholar 

  15. Timm, T. et al. MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J. 22, 5090–5101 (2003).

    Article  CAS  Google Scholar 

  16. Taylor, S. S. & McKeon, F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89, 727–735 (1997).

    Article  CAS  Google Scholar 

  17. Gorbsky, G. J., Chen, R. H. & Murray, A. W. Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J. Cell Biol. 141, 1193–1205 (1998).

    Article  CAS  Google Scholar 

  18. Johnson, V. L., Scott, M. I., Holt, S. V., Hussein, D. & Taylor, S. S. Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J. Cell Sci. 117, 1577–1589 (2004).

    Article  CAS  Google Scholar 

  19. Meraldi, P. & Sorger, P. K. A dual role for Bub1 in the spindle checkpoint and chromosome congression. EMBO J. 24, 1621–1633 (2005).

    Article  CAS  Google Scholar 

  20. Morrow, C. J. et al. Bub1 and aurora B cooperate to maintain BubR1-mediated inhibition of APC/CCdc20. J. Cell Sci. 118, 3639–3652 (2005).

    Article  CAS  Google Scholar 

  21. Lampson, M. A. & Kapoor, T. M. The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nature Cell Biol. 7, 93–98 (2005).

    Article  CAS  Google Scholar 

  22. Harrington, E. A. et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nature Med. 10, 262–267 (2004).

    Article  CAS  Google Scholar 

  23. Zeitlin, S. G., Shelby, R. D. & Sullivan, K. F. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J. Cell Biol. 155, 1147–1157 (2001).

    Article  CAS  Google Scholar 

  24. Meraldi, P., Draviam, V. M. & Sorger, P. K. Timing and checkpoints in the regulation of mitotic progression. Dev. Cell 7, 45–60 (2004).

    Article  CAS  Google Scholar 

  25. Vigneron, S. et al. Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol. Biol. Cell 15, 4584–4596 (2004).

    Article  CAS  Google Scholar 

  26. Wassmann, K., Liberal, V. & Benezra, R. Mad2 phosphorylation regulates its association with Mad1 and the APC/C. EMBO J. 22, 797–806 (2003).

    Article  CAS  Google Scholar 

  27. Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol. 161, 267–280 (2003).

    Article  CAS  Google Scholar 

  28. Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    Article  CAS  Google Scholar 

  29. Wollman, R. et al. Efficient chromosome capture requires a bias in the 'search-and-capture' process during mitotic-spindle assembly. Curr Biol. 15, 828–832 (2005).

    Article  CAS  Google Scholar 

  30. Silva, J. M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nature Genet. 37, 1281–1288 (2005).

    Article  CAS  Google Scholar 

  31. Draviam, V. M., Shapiro, I., Aldridge, B. & Sorger, P. K. Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells. EMBO J. 25, 2814–2827 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Yu, S. Taylor, W. Earnshaw, H. Kung, N. Gray, D.Allis and J. Jin for gifts of reagents, M. Vidal for providing access to their BioRobot platform, S. Lyman and R. King for communicating unpublished results and assistance with the development of the taxol screening assay, C. Shamu for access to the ICCB-Longwood screening facilities, and members of the Elledge lab for their critical reading of the manuscript. F.S. is a fellow of the Helen Hay Whitney Foundation. M.S. is supported by a post-doctoral fellowship from the American Cancer Society. The siRNA and ICCB-Longwood resources used were funded in part by a National Cancer Institute grant CA78048 (Tim Mitchison). This work was supported by grants from the National Institutes of Health (NIH) and Department of Defense to S.J.E., by grants from the NIH to J.W.H and to P.K.S. S.J.E. and G.J.H. are investigators with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Elledge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 329 kb)

Supplementary Information

Supplementary Table S1 (PDF 37583 kb)

Supplementary Information

Supplementary Table S2 (PDF 447 kb)

Supplementary Information

Supplementary Table S3 (PDF 693 kb)

Supplementary Information

Supplementary Table S4 (PDF 288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Draviam, V., Stegmeier, F., Nalepa, G. et al. A functional genomic screen identifies a role for TAO1 kinase in spindle-checkpoint signalling. Nat Cell Biol 9, 556–564 (2007). https://doi.org/10.1038/ncb1569

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1569

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing