Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases

Abstract

Nuclear dysfunction is a key feature of the pathology of polyglutamine (polyQ) diseases. It has been suggested that mutant polyQ proteins impair functions of nuclear factors by interacting with them directly in the nucleus. However, a systematic analysis of quantitative changes in soluble nuclear proteins in neurons expressing mutant polyQ proteins has not been performed. Here, we perform a proteome analysis of soluble nuclear proteins prepared from neurons expressing huntingtin (Htt) or ataxin-1 (AT1) protein, and show that mutant AT1 and Htt similarly reduce the concentration of soluble high mobility group B1/2 (HMGB1/2) proteins. Immunoprecipitation and pulldown assays indicate that HMGBs interact with mutant AT1 and Htt. Immunohistochemistry showed that these proteins were reduced in the nuclear region outside of inclusion bodies in affected neurons. Compensatory expression of HMGBs ameliorated polyQ-induced pathology in primary neurons and in Drosophila polyQ models. Furthermore, HMGBs repressed genotoxic stress signals induced by mutant Htt or transcriptional repression. Thus, HMGBs may be critical regulators of polyQ disease pathology and could be targets for therapy development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proteome analysis of soluble nuclear proteins from primary neurons expressing polyQ implicates HMGB1 and HMGB2 in polyQ pathology.
Figure 2: HMGB1 and HMGB2 proteins interact with mutant polyQ proteins.
Figure 3: HMGB proteins were reduced in neurons of polyQ disease model mice in vivo.
Figure 4: HMGB1 and HMGB2 proteins repress toxicities of mutant Htt and AT1.
Figure 5: HMGB1 represses in vivo toxicity of mutant polyQ proteins in Drosophila models.
Figure 6: Mutant Htt and transcriptional repression similarly induce genotoxic stress signals.
Figure 7: HMGB1 represses genotoxic stress signals induced by mutant Htt and transcriptional repression.
Figure 8: Reduction of HMGB1 induces cell death of primary cortical neurons.

Similar content being viewed by others

References

  1. Gusella, J. F. & MacDonald, M. E. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nature Rev. Neurosci, 1, 109–115 (2000).

    Article  CAS  Google Scholar 

  2. Zoghbi, H. Y. & Orr, H. T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247 (2000).

    Article  CAS  Google Scholar 

  3. Ross, C. A. Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron. 35, 819–822 (2002).

    Article  CAS  Google Scholar 

  4. Taylor, J. P., Hardy, J. & Fischbeck, K. H. Toxic proteins in neurodegenerative disease. Science 296, 1991–1995 (2002).

    Article  CAS  Google Scholar 

  5. Bonini, N. M. Chaperoning brain degeneration. Proc. Natl Acad. Sci. USA 99, S16407–S16311 (2002).

    Article  Google Scholar 

  6. Muchowski, P. J. & Wacker J. L . Modulation of neurodegeneration by molecular chaperones. Nature Rev. Neurosci. 6, 11–22 (2005).

    Article  CAS  Google Scholar 

  7. Orr, H. T. Beyond the Qs in the polyglutamine diseases. Genes Dev. 15, 925–932 (2001).

    Article  CAS  Google Scholar 

  8. Venkatraman, P., Wetzel, R., Tanaka, M., Nukina, N. & Goldberg AL . Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell. 14, 95–104 (2004).

    Article  CAS  Google Scholar 

  9. Panov, A. V. et al. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nature Neurosci. 5, 731–736 (2002).

    Article  CAS  Google Scholar 

  10. Li, H., Li, S. H., Johnston, H., Shelbourne, P. F. & Li, X. J. Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nature Genet. 25, 385–389 (2000).

    Article  CAS  Google Scholar 

  11. Gauthier, L. R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127–138 (2004).

    Article  CAS  Google Scholar 

  12. Sugars, K. L. & Rubinsztein, D. C. Transcriptional abnormalities in Huntington disease. Trends Genet. 19, 233–238 (2003).

    Article  CAS  Google Scholar 

  13. Klement, I. A. et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell. 95, 41–53 (1998).

    Article  CAS  Google Scholar 

  14. Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M. E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66 (1998).

    Article  CAS  Google Scholar 

  15. Steffan, J. S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature. 413, 739–743 (2001).

    Article  CAS  Google Scholar 

  16. McCampbell, A. et al. Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc. Natl Acad. Sci. USA 98, 15179–15184 (2001).

    Article  CAS  Google Scholar 

  17. Hockly, E. et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl Acad. Sci. USA 100, 2041–2046 (2003).

    Article  CAS  Google Scholar 

  18. Katsuno, M. et al. Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nature Med. 9, 768–773 (2003).

    Article  CAS  Google Scholar 

  19. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  20. Agresti, A. & Bianchi, M. E. HMGB proteins and gene expression. Curr. Opin. Genet Develop. 13, 170–178 (2003).

    Article  CAS  Google Scholar 

  21. Travers A. E . Priming the nucleosome: a role for HMGB proteins? EMBO Rep. 4, 131–136 (2003).

    Article  CAS  Google Scholar 

  22. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell. 90, 549–558 (1997).

    Article  CAS  Google Scholar 

  23. Perutz, M. F., Pope B. J., Owen, D., Wanker, E. E. & Scherzinger, E. Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagines-rich domains of Sup35 and of the amyloid β-peptide of amyloid plaques. Proc. Natl Acad. Sci. USA 99, 5596–5600 (2002).

    Article  CAS  Google Scholar 

  24. Ross, C. A., Poirier, M. A., Wanker, E. E. & Amzel, M. Polyglutamine fibrilogenesis: The pathway unfolds. Proc. Natl Acad. Sci. USA 100, 1–3 (2003).

    Article  CAS  Google Scholar 

  25. Tagawa, K. et al. Distinct aggregation and cell death patterns among different types of primary neurons induced by mutant huntingtin protein. J. Neurochem. 89, 974–987 (2004).

    Article  CAS  Google Scholar 

  26. Hoshino, M., Tagawa, K., Okuda, T. & Okazawa H . General transcriptional repression by polyglutamine disease proteins is not directly linked to the presence of inclusion bodies. Biochem. Biophys. Res. Commun. 313, 110–116 (2004).

    Article  CAS  Google Scholar 

  27. Fernandez-Funez, P. et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408, 101–106 (2000).

    Article  CAS  Google Scholar 

  28. Jackson, G. R. et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21, 633–642 (1998).

    Article  CAS  Google Scholar 

  29. Hoshino, M. et al. Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73. J. Cell Biol. 172, 589–604 (2006).

    Article  CAS  Google Scholar 

  30. Bae, B.-II . et al. p53 mediates cellular dysfunction and behavioral abnormalities in Huntington's disease. Neuron 47, 29–41 (2005).

    Article  CAS  Google Scholar 

  31. Sancar, A., Lindsay-Boltz, L. A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoint. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article  CAS  Google Scholar 

  32. Sengupta, S. & Harris, C. C. p53: traffic cop at the crossroads of DNA repair and recombination. Nature Rev. Mol. Cell Biol. 6, 44–55 (2005).

    Article  CAS  Google Scholar 

  33. Ohndorf, U.-M., Rould, M. A., He, Q., Pabo, C. O. & Lippard, S. J. Basis for recognition of cisplatin-modified DNA by high mobility group proteins. Nature 399, 708–712 (1999).

    Article  CAS  Google Scholar 

  34. Jayaraman, L. et al. High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev. 12, 462–472 (1998).

    Article  CAS  Google Scholar 

  35. Zhang, Y. et al. Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 122, 693–705 (2005).

    Article  CAS  Google Scholar 

  36. Giavara, S. et al. Yeast Nph6A/B and mammalian Hmgb1 facilitate the maintenance of genome stability. Curr. Biol. 15, 68–72 (2005).

    Article  CAS  Google Scholar 

  37. Bianchi, M. E. & Beltrame, M. Flexing DNA: HMG-box proteins and their partners. Am. J. Hum. Genet. 63, 1573–1577 (1998).

    Article  CAS  Google Scholar 

  38. Schaffar G . et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15, 95–105 (2004).

    Article  CAS  Google Scholar 

  39. Zhai, W., Jeong, H., Cui, L., Krainc, D. & Tjian, R. In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets. Cell 123, 1241–1253 (2005).

    Article  CAS  Google Scholar 

  40. Okazawa, H. et al. Interaction between mutant ataxin-1 and PQBP-1 affects transcription and cell death. Neuron 34, 701–713 (2002).

    Article  CAS  Google Scholar 

  41. Arrasate, M., Mitra, S., Schweitzer, E. S. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2005).

    Article  Google Scholar 

  42. Bonaldi, T. et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 22, 5551–5560 (2003).

    Article  CAS  Google Scholar 

  43. de Chiara, C. et al. The AXH module: an independently folded domain common to ataxin-1 and HBP1. FEBS Lett. 551, 107–112 (2003).

    Article  CAS  Google Scholar 

  44. Chen, Y. W., Allen, M. D., Veprintsev, D. B., Lowe, J. & Bycroft, M. The structure of the AXH domain of spinocerebellar ataxin-1. J. Biol. Chem. 279, 3758–3765 (2004).

    Article  CAS  Google Scholar 

  45. Calogero, S. et al. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycemia in newborn mice. Nature Genet. 22, 276–280 (1999).

    Article  CAS  Google Scholar 

  46. Okamoto, K., Okazawa, H., Okuda, A., Muramatsu, M. & Hamada, H. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60, 461–472 (1990).

    Article  CAS  Google Scholar 

  47. Watase, K. et al. A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron 34, 905–919 (2002).

    Article  CAS  Google Scholar 

  48. Hirai, H. & Launey, T. The regulatory connection between the activity of granule cell NMDA receptors and dendritic differentiation of cerebellar Purkinje cells. J. Neurosci. 20, 5217–5224 (2000).

    Article  CAS  Google Scholar 

  49. Dura, J. M., Preat, T. & Tully, T. Identification of linotte, a new gene affecting learning and memory in Drosophila melanogaster. J. Neurogenet. 9, 1–14 (1993).

    Article  CAS  Google Scholar 

  50. Rubin, G. M. & Spradling, A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 218, 348–353 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to H.O. from the Japan Ministry of Education, Culture, Science, Sports and Technology (16650076), Japan Society for the Promotion of Science (JSPS; 16390249) and Japan Science and Technology Agency (JST; PRESTO). We thank M. Matsumoto and T. Miyashita (Tokyo Metropolitan Institute for Neuroscience, TMIN) for Drosophila experiments, T. Okuda and Shigeki Marubuchi (TMIN, Tokyo Medical and Dental University; TMDU) for primary culture, and T. Tajima for immunohistochemistry. We also thank H. Y. Zoghbi (Baylor College of Medicine) for sharing AT1 knock-in mouse samples and for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

This work was mainly performed by M.-L.Q. in collaboration with K.T, Y.E. and other co-authors. The project was planned by H.O.

Corresponding author

Correspondence to Hitoshi Okazawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, S7 and Supplementary Methods (PDF 1509 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, ML., Tagawa, K., Enokido, Y. et al. Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases. Nat Cell Biol 9, 402–414 (2007). https://doi.org/10.1038/ncb1553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1553

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing