Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Ets transcription factor GABP is required for cell-cycle progression

Abstract

The transition from cellular quiescence (G0) into S phase is regulated by the mitogenic-activation of D-type cyclins and cyclin-dependent kinases (Cdks), the sequestration of the Cdk inhibitors (CDKIs), p21 and p27, and the hyperphosphorylation of Rb with release of E2F transcription factors1,2. However, fibroblasts that lack all D-type cyclins can still undergo serum-induced proliferation3 and key E2F targets are expressed at stable levels despite cyclical Rb–E2F activity1. Here, we show that serum induces expression of the Ets transcription factor, Gabpα, and that its ectopic expression induces quiescent cells to re-enter the cell cycle. Genetic disruption of Gabpα prevents entry into S phase, and selectively reduces expression of genes that are required for DNA synthesis and degradation of CDKIs, yet does not alter expression of D-type cyclins, Cdks, Rb or E2Fs. Thus, GABP is necessary and sufficient for re-entry into the cell cycle and it regulates a pathway that is distinct from that of D-type cyclins and CDKs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Serum-induced expression of Gapbα and its impact on targets and cellular proliferation.
Figure 2: Conditional disruption of Gabpa in MEFs.
Figure 3: Growth and cell-cycle arrest caused by Gabpa disruption.
Figure 4: Gene or protein expression in MEFs, and dependence of target gene promoters on Gabp.
Figure 5: Effects of Gapba disruption on cell-cycle regulators and proposed GABP pathway.

Similar content being viewed by others

References

  1. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  Google Scholar 

  2. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  Google Scholar 

  3. Kozar, K. M. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004).

    Article  CAS  Google Scholar 

  4. Hsu, T., Trojanowska, M. & Watson, D. K. Ets proteins in biological control and cancer. J.Cell Biochem. 91, 896–903 (2004).

    Article  CAS  Google Scholar 

  5. Rosmarin, A. G., Resendes, K. K., Yang, Z., McMillan, J. N. & Fleming, S. L. GA-binding protein transcription factor: a review of GABP as an integrator of intracellular signaling and protein-protein interactions. Blood Cell Mol. Dis. 32, 143–154 (2004).

    Article  CAS  Google Scholar 

  6. LaMarco, K., Thompson, C. C., Byers, B. P., Walton, E. M. & McKnight, S. L. Identification of Ets- and notch-related subunits in GA binding protein. Science 253, 789–792 (1991).

    Article  CAS  Google Scholar 

  7. Luo, M. et al. Characterization and localization to chromosome 7 of ψhGABPα, a human processed pseudogene related to the ets transcription factor, hGABPα. Gene 234, 119–126 (1999).

    Article  CAS  Google Scholar 

  8. Brown, T. A. & McKnight, S. L. Specificities of protein–protein and protein–DNA interaction of GABPα and two newly defined ets-related proteins. Genes Dev. 6, 2502–2512 (1992).

    Article  CAS  Google Scholar 

  9. Ristevski, S. et al. The Ets transcription factor GABPα is essential for early embryogenesis. Mol. Cell Biol. 24, 5844–5849 (2004).

    Article  CAS  Google Scholar 

  10. Resendes, K. K. & Rosmarin, A. G. Interaction between GABPα pointed domain and p300 mediates retinoic acid induced transcriptional activation of CD18 in myeloid cells. Mol. Cell Biol. 26, 3060–3070 (2006).

    Article  CAS  Google Scholar 

  11. Rudge, T. L. & Johnson, L. F. Synergistic activation of the TATA-less mouse thymidylate synthase promoter by the Ets transcription factor GABP and Sp1. Exp. Cell Res. 274, 45–55 (2002).

    Article  CAS  Google Scholar 

  12. Izumi M. et al. Transcription of the catalytic 180-kDa subunit gene of mouse DNA polymerase α is controlled by E2F, an Ets-related transcription factor, and Sp1. Biochim. Biophys. Acta. 1492, 341–352 (2000).

    Article  CAS  Google Scholar 

  13. Imaki, H. et al. Cell cycle-dependent regulation of the Skp2 promoter by GA-binding protein. Cancer Res. 63, 4607–4613 (2003).

    CAS  PubMed  Google Scholar 

  14. Nishikawa, N. S., Izumi, M., Yokoi, M., Miyazawa, H. & Hanaoka, F. E2F regulated growth-dependent transcription of genes encoding both the catalytic and regulatory subunits of mouse primase. Genes to Cells 6, 57–70 (2001).

    Article  CAS  Google Scholar 

  15. Carter, R. S., Bhat, N. K., Basu, A. & Avadhani, N. G. The basal promoter elements of murine cytochrome c oxidase subunit IV gene consist of tandemly duplicated ets motifs that bind to GABP-related transcription factors. J. Biol. Chem. 267, 23418–23426 (1992).

    CAS  PubMed  Google Scholar 

  16. Sucharov, C., Basu, A., Carter, R. S. & Avadhani, N. G. A novel transcriptional initiator activity of the GABP factor binding ets sequence repeat from the murine cytochrome c oxidase Vb gene. Gene Expr. 5, 93–111 (1995).

    CAS  PubMed  Google Scholar 

  17. Villena, J. A. et al. Regulation of mitochondrial biogenesis in brown adipose tissue: nuclear respiratory factor-2/GA-binding protein is responsible for the transcriptional regulation of the gene for the mitochondrial ATP synthase beta subunit. Biochem. J. 331, 121–127 (1998).

    Article  CAS  Google Scholar 

  18. Virbasius, J. V. & Scarpulla, R. C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl Acad. Sci. USA 91, 1309–1313 (1994).

    Article  CAS  Google Scholar 

  19. Genuario, R. R., Kelley, D. E. & Perry, R. P. Comparative utilization of transcription factor GABP by the promoters of ribosomal protein genes rpL30 and rpL32. Gene Expression 3, 279–288 (1993).

    CAS  PubMed  Google Scholar 

  20. Fingar, D. C., Salama, S., Tsou, C., Harlow, E. & Blenis, J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16, 1472–1487 (2002).

    Article  CAS  Google Scholar 

  21. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell. Biol. 1, 193–199 (1999).

    Article  CAS  Google Scholar 

  22. Yu, Z. K., Gervais, J. L. & Zhang, H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21CIP1/WAF1 and cyclin D proteins. Proc. Natl Acad. Sci. USA 95, 11324–11329 (1998).

    Article  CAS  Google Scholar 

  23. Nakayama, K. et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication. EMBO J. 19, 2069–2081 (2000).

    Article  CAS  Google Scholar 

  24. Helin, K. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8, 28–35 (1998).

    Article  CAS  Google Scholar 

  25. Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393–2409 (2000).

    Article  CAS  Google Scholar 

  26. Miyazawa, H. et al. Molecular cloning of the cDNAs for the four subunits of mouse DNA polymerase alpha-primase complex and their gene expression during cell proliferation and the cell cycle. J.Biol.Chem. 268, 8111–8122 (1993).

    CAS  PubMed  Google Scholar 

  27. Navalgund, L. G., Rossana, C., Muench, A. J. & Johnson, L. F. Cell-cycle regulation of thymidylate synthetase gene expression in cultured mouse fibroblasts. J.Biol.Chem. 255, 7386–7390 (1980).

    CAS  PubMed  Google Scholar 

  28. Wei, W. et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428, 194–198 (2004).

    Article  CAS  Google Scholar 

  29. Rosmarin, A. G., Caprio, D. G., Kirsch, D. G., Handa, H. & Simkevich, C. P. GABP and PU.1 compete for binding, yet cooperate to increase CD18 (β2 leukocyte integrin) transcription. J. Biol. Chem. 270, 23627–23633 (1995).

    Article  CAS  Google Scholar 

  30. Attardi, L. D., Vries, A. & Jacks, T. Activation of the p53-dependent G1 checkpoint response in mouse embryo fibroblasts depends on the specific DNA damage inducer. Oncogene 23, 973–980 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank: R. Mortensen (University of Michigan, Ann Arbour, MI) for the pLNCL targeting plasmid; J. Sedivy (Brown University, Providence, RI) for advice on targeting construct strategy; T. Nottoli (Yale University, New Haven, CT) for assistance in generation of floxed Gabpa mice; J. Singer (Brown University) for pBabe–Cre; K.-U. Wagner (University of Nebraska, Omaha, NE) for the retroviral DNA pBabe; J. Foster (University of Tennessee, Knoxville, TN) for the Adeno–Skp2 virus; T. Jacks (Massachussetts Institute of Technology, Cambridge, MA) for Rb−/− MEFs; S. Fleming (Millennium Pharmaceuticals, Cambridge, MA) for technical assistance; E. Sabo (Rhode Island Hospital, Providence, RI) for imaging assistance; and E. Chin and J. Singer (Brown University), J. Licht (Northwestern University, Chicago, IL), D. Tenen (Harvard Medical School, Boston, MA), and members of the Rosmarin laboratory for critical reading of the manuscript. This work was supported by 1R01HL073945, and the following National Institutes of Health (NIH) COBRE Awards: P20 RR15578 (Brown University), 1P20RR017695 (Lifespan, Providence, RI), and 1P20RR018757 (Roger Williams Medical Center, Providence, RI) to A.G.R. Z.-F.Y. is supported by the Herbert W. Savit '49 Fund (Brown University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan G. Rosmarin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 264 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, ZF., Mott, S. & Rosmarin, A. The Ets transcription factor GABP is required for cell-cycle progression. Nat Cell Biol 9, 339–346 (2007). https://doi.org/10.1038/ncb1548

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing