Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Constitutive RelA activation mediated by Nkx3.2 controls chondrocyte viability

Abstract

During endochondral ossification, a process that accounts for the majority of bone formation in vertebrates, hypertrophic chondrocytes display a greater susceptibility to apoptosis when compared to proliferating chondrocytes. However, the molecular mechanisms underlying this phenomenon remain unclear. Nkx3.2, a member of the NK class of homeoproteins, is initially expressed in chondrogenic precursor cells, and later, during cartilage maturation, its expression is restricted to proliferating chondrocytes. Here, we show that the nuclear factor kappa B (NF-κB) pathway is required for chondrocyte viability and that Nkx3.2 supports chondrocyte survival by constitutively activating RelA. Although signal-dependent NF-κB activation has been intensively studied, ligand-independent NF-κB activation is poorly understood. The data presented here support a novel ligand-independent mechanism of NF-κB activation, whereby Nkx3.2 recruits the RelA–IκBα heteromeric complex into the nucleus by direct protein–protein interactions and activates RelA through proteasome-dependent IκBα degradation in the nucleus. Furthermore, we demonstrate that stage-specific NF-κB activation, mediated by Nkx3.2, regulates chondrocyte viability during cartilage maturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nkx3.2 enhances chondrocyte survival.
Figure 2: Nkx3.2 constitutively activates RelA.
Figure 3: Nkx3.2 recruits RelA and IκBα into the nucleus by direct protein interactions.
Figure 4: Nkx3.2 causes proteasome-dependent degradation of IκBα.
Figure 5: Stable interactions with RelA–IκBα are required for Nkx3.2 to activate NF-κB and inhibit chondrocyte apoptosis.
Figure 6: The transcriptional functionality of Nkx3.2 is not required to activate NF-κB or enhance chondrocyte viability.
Figure 7: Stage-specific expression of Nkx3.2 during chondrocyte maturation modulates NF-κB activity and, in turn, regulates chondrocyte viability.

Similar content being viewed by others

References

  1. Meffert, M. K. & Baltimore, D. Physiological functions for brain NF-κB. Trends Neurosci. 28, 37–43 (2005).

    Article  CAS  Google Scholar 

  2. Li, Q., Withoff, S. & Verma, I. M. Inflammation-associated cancer: NF-κB is the lynchpin. Trends Immunol, 26, 318–325 (2005).

    Article  Google Scholar 

  3. Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288 (2004).

    Article  CAS  Google Scholar 

  4. Hayden, M. S. & Ghosh, S. Signaling to NF-κB. Genes Dev. 18, 2195–2224 (2004).

    Article  CAS  Google Scholar 

  5. Chen, L. F. & Greene, W. C. Shaping the nuclear action of NF-κB. Nature Rev. Mol. Cell Biol. 5, 392–401 (2004).

    Article  CAS  Google Scholar 

  6. Schmitz, M. L., Mattioli, I., Buss, H. & Kracht, M. NF-κB: a multifaceted transcription factor regulated at several levels. Chembiochem 5, 1348–1358 (2004).

    Article  CAS  Google Scholar 

  7. Lefebvre, V. & Smits, P. Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res. C. Embryo Today 75, 200–212 (2005).

    Article  CAS  Google Scholar 

  8. de Crombrugghe, B., Lefebvre, V. & Nakashima, K. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr. Opin. Cell Biol. 13, 721–727 (2001).

    Article  CAS  Google Scholar 

  9. Yang, X. & Karsenty, G. Transcription factors in bone: developmental and pathological aspects. Trends Mol. Med. 8, 340–345 (2002).

    Article  CAS  Google Scholar 

  10. Kronenberg, H. M. Developmental regulation of the growth plate. Nature 423, 332–336 (2003).

    Article  CAS  Google Scholar 

  11. Gibson, G. Active role of chondrocyte apoptosis in endochondral ossification. Microsc. Res. Tech. 43, 191–204 (1998).

    Article  CAS  Google Scholar 

  12. Vortkamp, A. Interaction of growth factors regulating chondrocyte differentiation in the developing embryo. Osteoarthritis Cartilage 9, S109–S117 (2001).

    PubMed  Google Scholar 

  13. Tribioli, C. & Lufkin, T. Molecular cloning, chromosomal mapping and developmental expression of BAPX1, a novel human homeobox-containing gene homologous to Drosophila bagpipe. Gene 203, 225–233 (1997).

    Article  CAS  Google Scholar 

  14. Murtaugh, L. C., Zeng, L., Chyung, J. H. & Lassar, A. B. The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis. Dev. Cell 1, 411–422 (2001).

    Article  CAS  Google Scholar 

  15. Zeng, L., Kempf, H., Murtaugh, L. C., Sato, M. E. & Lassar, A. B. Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev. 16, 1990–2005 (2002).

    Article  CAS  Google Scholar 

  16. Kim, D. W. & Lassar, A. B. Smad-dependent recruitment of a histone deacetylase/Sin3A complex modulates the bone morphogenetic protein-dependent transcriptional repressor activity of Nkx3.2. Mol. Cell Biol. 23, 8704–8717 (2003).

    Article  CAS  Google Scholar 

  17. Yoshiura, K. I. & Murray, J. C. Sequence and chromosomal assignment of human BAPX1, a bagpipe-related gene, to 4p16.1: a candidate gene for skeletal dysplasia. Genomics 45, 425–428 (1997).

    Article  CAS  Google Scholar 

  18. Church, V. et al. Expression and function of Bapx1 during chick limb development. Anat. Embryol. (Berl) 209, 461–469 (2005).

    Article  CAS  Google Scholar 

  19. Provot, S. et al. Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development 133, 651–662 (2006).

    Article  CAS  Google Scholar 

  20. Atsumi, T., Miwa, Y., Kimata, K. & Ikawa, Y. A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Differ. Dev. 30, 109–116 (1990).

    Article  CAS  Google Scholar 

  21. Shukunami, C., Ohta, Y., Sakuda, M. & Hiraki, Y. Sequential progression of the differentiation program by bone morphogenetic protein-2 in chondrogenic cell line ATDC5. Exp. Cell Res. 241, 1–11 (1998).

    Article  CAS  Google Scholar 

  22. Lettice, L. A. et al. The mouse bagpipe gene controls development of axial skeleton, skull, and spleen. Proc. Natl Acad. Sci. USA 96, 9695–9700 (1999).

    Article  CAS  Google Scholar 

  23. Akazawa, H. et al. Targeted disruption of the homeobox transcription factor bapx1 results in lethal skeletal dysplasia with asplenia and gastroduodenal malformation. Genes Cells 5, 499–513 (2000).

    Article  CAS  Google Scholar 

  24. Tribioli, C. & Lufkin, T. The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development 126, 5699–5711 (1999).

    CAS  PubMed  Google Scholar 

  25. Birbach, A. et al. Signaling molecules of the NF-κB pathway shuttle constitutively between cytoplasm and nucleus. J. Biol. Chem. 277, 10842–10851 (2002).

    Article  CAS  Google Scholar 

  26. Hu, C. D., Chinenov, Y. & Kerppola, T. K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789–798 (2002).

    Article  CAS  Google Scholar 

  27. Kim, D. W., Kempf, H., Chen, R. E. & Lassar, A. B. Characterization of Nkx3.2 DNA binding specificity and its requirement for somitic chondrogenesis. J. Biol. Chem. 278, 27532–27539 (2003).

    Article  CAS  Google Scholar 

  28. Tsukahara, T. et al. Induction of Bcl-x(L) expression by human T-cell leukemia virus type 1 Tax through NF-κB in apoptosis-resistant T-cell transfectants with Tax. J. Virol. 73, 7981–7987 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376, 167–170 (1995).

    Article  CAS  Google Scholar 

  30. Gerondakis, S., Grossmann, M., Nakamura, Y., Pohl, T. & Grumont, R. Genetic approaches in mice to understand Rel/NF-κB and IκB function: transgenics and knockouts. Oncogene 18, 6888–6895 (1999).

    Article  CAS  Google Scholar 

  31. Kanegae, Y., Tavares, A. T., Izpisua Belmonte, J. C. & Verma, I. M. Role of Rel/NF-κB transcription factors during the outgrowth of the vertebrate limb. Nature 392, 611–614 (1998).

    Article  CAS  Google Scholar 

  32. Kim, D. W., Cheriyath, V., Roy, A. L. & Cochran, B. H. TFII-I enhances activation of the c-fos promoter through interactions with upstream elements. Mol. Cell Biol. 18, 3310–3320 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Korea Research Foundation Grants funded by the Korean Government Basic Research Promotion Fund; KRF-2004-003-C00143, KRF-2005-070-C00091) and by the Science Research Center/Engineering Research Center (SRC/ERC) programme of the Ministry of Science and Technology/Korea Science and Engineering foundation (MOST/KOSEF; R112000078020020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Won Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 1767 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, M., Yong, Y., Choi, SW. et al. Constitutive RelA activation mediated by Nkx3.2 controls chondrocyte viability. Nat Cell Biol 9, 287–298 (2007). https://doi.org/10.1038/ncb1538

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1538

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing