Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of centrosome integrity induces p38—p53—p21-dependent G1—S arrest

Abstract

Centrosomes organize the microtubule cytoskeleton for both interphase and mitotic functions. They are implicated in cell-cycle progression but the mechanism is unknown. Here, we show that depletion of 14 out of 15 centrosome proteins arrests human diploid cells in G1 with reduced Cdk2–cyclin A activity and that expression of a centrosome-disrupting dominant-negative construct gives similar results. Cell-cycle arrest is always accompanied by defects in centrosome structure and function (for example, duplication and primary cilia assembly). The arrest occurs from within G1, excluding contributions from mitosis and cytokinesis. The arrest requires p38, p53 and p21, and is preceded by p38-dependent activation and centrosomal recruitment of p53. p53-deficient cells fail to arrest, leading to centrosome and spindle dysfunction and aneuploidy. We propose that loss of centrosome integrity activates a checkpoint that inhibits G1–S progression. This model satisfies the definition of a checkpoint in having three elements: a perturbation that is sensed, a transducer (p53) and a receiver (p21).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: siRNA-mediated centrosome protein depletion triggers G1 arrest.
Figure 2: G1 arrest can specifically be suppressed by overexpression of the target protein.
Figure 3: G1 arrest can be induced from within G1, occurs in late G1 with reduced Cdk2–cyclin A activity and is suppressed by deletion of the p21 gene.
Figure 4: G1 arrested cells show defects in centrosome structure and organization.
Figure 5: G1 arrested cells exhibit defects in centrosome function.
Figure 6: G1 arrest induced by centrosome protein depletion is p53-dependent.
Figure 7: G1 arrest induced by centrosome protein depletion is p38-dependent.
Figure 8: The p38-activated form of p53 accumulates at the centrosome before G1 arrest.

Similar content being viewed by others

References

  1. Doxsey, S., Zimmerman, W. & Mikule, K. Centrosome control of the cell cycle. Trends Cell Biol. 15, 303–311 (2005).

    Article  CAS  Google Scholar 

  2. Hinchcliffe, E. H. & Sluder, G. “It takes two to tango”: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev. 15, 1167–1181 (2001).

    Article  CAS  Google Scholar 

  3. Lacey, K. R., Jackson, P. K. & Stearns, T. Cyclin-dependent kinase control of centrosome duplication. Proc. Natl Acad. Sci. USA 96, 2817–2822 (1999).

    Article  CAS  Google Scholar 

  4. Pihan, G. A. et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 58, 3974–3985 (1998).

    CAS  PubMed  Google Scholar 

  5. Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer 2, 815–825 (2002).

    Article  CAS  Google Scholar 

  6. Khodjakov, A. & Rieder, C. L. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J. Cell Biol. 153, 237–242 (2001).

    Article  CAS  Google Scholar 

  7. Hinchcliffe, E. H., Miller, F. J., Cham, M., Khodjakov, A. & Sluder, G. Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291, 1547–1550 (2001).

    Article  CAS  Google Scholar 

  8. Gromley, A. et al. A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase. J. Cell Biol. 161, 535–545 (2003).

    Article  CAS  Google Scholar 

  9. Wong, C. & Stearns, T. Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol. 6, 6 (2005).

    Article  Google Scholar 

  10. Uetake, Y. & Sluder, G. Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a “tetraploidy checkpoint”. J. Cell Biol. 165, 609–615 (2004).

    Article  CAS  Google Scholar 

  11. Matsumoto, Y. & Maller, J. L. A centrosomal localization signal in cyclin E required for Cdk2-independent S phase entry. Science 306, 885–888 (2004).

    Article  CAS  Google Scholar 

  12. Gerdes, J. et al. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 133, 1710–1715 (1984).

    CAS  PubMed  Google Scholar 

  13. Delgehyr, N., Sillibourne, J. & Bornens, M. Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 118, 1565–1575 (2005).

    Article  CAS  Google Scholar 

  14. Casenghi, M. et al. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev. Cell 5, 113–125 (2003).

    Article  CAS  Google Scholar 

  15. Gillingham, A. K. & Munro, S. The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep. 1, 524–529 (2000).

    Article  CAS  Google Scholar 

  16. Balczon, R., Simerly, C., Takahashi, D. & Schatten, G. Arrest of cell cycle progression during first interphase in murine zygotes microinjected with anti-PCM-1 antibodies. Cell Motil. Cytoskeleton 52, 183–192 (2002).

    Article  CAS  Google Scholar 

  17. Gromley, A. et al. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123, 75–87 (2005).

    Article  CAS  Google Scholar 

  18. Nose, A. & Takeichi, M. A novel cadherin cell adhesion molecule: its expression patterns associated with implantation and organogenesis of mouse embryos. J. Cell Biol. 103, 2649–2658 (1986).

    Article  CAS  Google Scholar 

  19. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  Google Scholar 

  20. La Terra, S. et al. The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J. Cell Biol. 168, 713–722 (2005).

    Article  CAS  Google Scholar 

  21. Kirkham, M., Muller-Reichert, T., Oegema, K., Grill, S. & Hyman, A. A. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575–587 (2003).

    Article  CAS  Google Scholar 

  22. Leidel, S. & Gonczy, P. SAS-4 is essential for centrosome duplication in C. elegans and is recruited to daughter centrioles once per cell cycle. Dev. Cell 4, 431–439 (2003).

    Article  CAS  Google Scholar 

  23. Habedanck, R., Stierhof, Y. D., Wilkinson, C. J. & Nigg, E. A. The Polo kinase Plk4 functions in centriole duplication. Nature Cell Biol. 7, 1140–1146 (2005).

    Article  CAS  Google Scholar 

  24. Salisbury, J. L., Suino, K. M., Busby, R. & Springett, M. Centrin-2 is required for centriole duplication in mammalian cells. Curr. Biol. 12, 1287–1292 (2002).

    Article  CAS  Google Scholar 

  25. Bettencourt-Dias, M., et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199–2207 (2005).

    Article  CAS  Google Scholar 

  26. Balczon, R. et al. Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J. Cell Biol. 130, 105–115 (1995).

    Article  CAS  Google Scholar 

  27. Jurczyk, A. et al. Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. J. Cell Biol. 166, 637–643 (2004).

    Article  CAS  Google Scholar 

  28. Pazour, G. J. & Witman, G. B. The vertebrate primary cilium is a sensory organelle. Curr. Opin. Cell Biol. 15, 105–110 (2003).

    Article  CAS  Google Scholar 

  29. Rubbi, C. P. & Milner, J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 22, 6068–6077 (2003).

    Article  CAS  Google Scholar 

  30. Zhan, Q., Carrier, F. & Fornace, A. J., Jr. Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol. Cell Biol. 13, 4242–4250 (1993).

    Article  CAS  Google Scholar 

  31. Wang, B., Matsuoka, S., Carpenter, P. B. & Elledge, S. J. 53BP1, a mediator of the DNA damage checkpoint. Science 298, 1435–1438 (2002).

    Article  CAS  Google Scholar 

  32. Wu, G. S. The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol. Ther. 3, 156–161 (2004).

    Article  CAS  Google Scholar 

  33. Yee, A. S. et al. The HBP1 transcriptional repressor and the p38 MAP kinase: unlikely partners in G1 regulation and tumor suppression. Gene 336, 1–13 (2004).

    Article  CAS  Google Scholar 

  34. Kishi, H. et al. Osmotic shock induces G1 arrest through p53 phosphorylation at Ser33 by activated p38MAPK without phosphorylation at Ser15 and Ser20. J. Biol. Chem. 276, 39115–39122 (2001).

    Article  CAS  Google Scholar 

  35. Lee, J. C. et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746 (1994).

    Article  CAS  Google Scholar 

  36. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  Google Scholar 

  37. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  38. Dutcher, S. K. Elucidation of basal body and centriole functions in Chlamydomonas reinhardtii. Traffic 4, 443–451 (2003).

    Article  CAS  Google Scholar 

  39. Srsen, V., Gnadt, N., Dammermann, A. & Merdes, A. Inhibition of centrosome protein assembly leads to p53-dependent exit from the cell cycle. J. Cell Biol. 174, 625–630 (2006).

    Article  CAS  Google Scholar 

  40. Leidel, S., Delattre, M., Cerutti, L., Baumer, K. & Gonczy, P. SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nature Cell Biol. 7, 115–125 (2005).

    Article  CAS  Google Scholar 

  41. Pihan, G. A. et al. Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res. 61, 2212–2219 (2001).

    CAS  PubMed  Google Scholar 

  42. Grieshaber, S. S., Grieshaber, N. A., Miller, N. & Hackstadt, T. Chlamydia trachomatis causes centrosomal defects resulting in chromosomal segregation abnormalities. Traffic 7, 940–949 (2006).

    Article  CAS  Google Scholar 

  43. Ploubidou, A. et al. Vaccinia virus infection disrupts microtubule organization and centrosome function. EMBO J. 19, 3932–3944 (2000).

    Article  CAS  Google Scholar 

  44. Jouvenet, N. & Wileman, T. African swine fever virus infection disrupts centrosome assembly and function. J. Gen. Virol. 86, 589–594 (2005).

    Article  CAS  Google Scholar 

  45. Vidair, C. A., Doxsey, S. J. & Dewey, W. C. Thermotolerant cells possess an enhanced capacity to repair heat-induced alterations to centrosome structure and function. J. Cell. Physiol. 163, 194–203 (1995).

    Article  CAS  Google Scholar 

  46. Tuffanelli, D. L., McKeon, F., Kleinsmith, D. M., Burnham, T. K. & Kirschner, M. Anticentromere and anticentriole antibodies in the scleroderma spectrum. Arch. Dermatol. 119, 560–566 (1983).

    Article  CAS  Google Scholar 

  47. Berthet, C., Aleem, E., Coppola, V., Tessarollo, L. & Kaldis, P. Cdk2 knockout mice are viable. Curr. Biol. 13, 1775–1785 (2003).

    Article  CAS  Google Scholar 

  48. Morales, C. P. et al. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nature Genet. 21, 115–118 (1999).

    Article  CAS  Google Scholar 

  49. Kennedy, B. K., Barbie, D. A., Classon, M., Dyson, N. & Harlow, E. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev. 14, 2855–2868 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Theurkauf, D. McCollum, C. Sherr and C. Havens for useful discussions on this work. This work was supported by funding from the National Institutes of Health (GM51994) to S.J.D., the Department of Defense to K.M., B.D. (DMAD17-03-1-0303) and A.J. (DAMD17-03-1-056), and the Intramural Research Program of the National Cancer Institute (P.K.).

Author information

Authors and Affiliations

Authors

Contributions

This project was conceived, planned and much of it executed by K.M. Much of the quantitative data on centrosome function and structure and the rescue experiments were performed by B.D. P.K. peformed the Cdk–cyclin immunoprecipitations and assays, and P.H. performed electron microscopy.

Corresponding author

Correspondence to Stephen Doxsey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4 and S5 (PDF 581 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikule, K., Delaval, B., Kaldis, P. et al. Loss of centrosome integrity induces p38—p53—p21-dependent G1—S arrest. Nat Cell Biol 9, 160–170 (2007). https://doi.org/10.1038/ncb1529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing