Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Key components of the fission machinery are interchangeable

Abstract

Brefeldin-A ADP-ribosylated substrate (BARS) and dynamin function in membrane fission in distinct intracellular transport pathways1, but whether their functions are mechanistically similar is unclear. Here, we show that ARFGAP1, a GTPase-activating protein (GAP) for ADP-ribosylation factor 1 (ARF1)2, couples to either BARS or endophilin B for vesicle formation by the coat protein I (COPI) complex — a finding that reveals an unanticipated mechanistic flexibility in mammalian COPI transport. Because dynamin is coupled to endophilin A in vesicle formation by the clathrin-coat complex3,4,5, our finding also predicts that dynamin and ARF GAPs are likely to be functional counterparts in membrane fission among different transport pathways that connect intracellular membrane compartments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MEFs do not require BARS for COPI-vesicle formation.
Figure 2: MEFs require endophilin B for COPI-vesicle formation.
Figure 3: COPI-vesicle formation requires either BARS or endophilin B depending on the cell type.
Figure 4: BARS and endophilin B act interchangeably in COPI vesicle reconstitution.
Figure 5: In vivo evidence for the interchangeability between BARS and endophilin B.

Similar content being viewed by others

References

  1. Bonazzi, M. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nature Cell Biol. 7, 570–580 (2005).

    Article  CAS  Google Scholar 

  2. Cukierman, E., Huber, I., Rotman, M. & Cassel, D. The ARF1-GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270, 1999–2002 (1995).

    Article  CAS  Google Scholar 

  3. Ringstad, N. et al. Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24, 143–154 (1999).

    Article  CAS  Google Scholar 

  4. Schmidt, A. et al. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401, 133–141 (1999).

    Article  CAS  Google Scholar 

  5. Simpson, F. et al. SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nature Cell Biol. 1, 119–124 (1999).

    Article  CAS  Google Scholar 

  6. D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nature Rev. Mol. Cell Biol. 7, 347–358 (2006).

    Article  CAS  Google Scholar 

  7. Ostermann, J. et al. Stepwise assembly of functionally active transport vesicles. Cell 75, 1015–1025 (1993).

    Article  CAS  Google Scholar 

  8. Yang, J. S. et al. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J. Cell Biol. 159, 69–78 (2002).

    Article  CAS  Google Scholar 

  9. Lee, S. Y., Yang, J. S., Hong, W., Premont, R. T. & Hsu, V. W. ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. J. Cell Biol. 168, 281–290 (2005).

    Article  CAS  Google Scholar 

  10. Yang, J. et al. A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO J. 24, 4133–4143 (2005).

    Article  CAS  Google Scholar 

  11. Corda, D., Colanzi, A. & Luini, A. The multiple activities of CtBP/BARS proteins: the Golgi view. Trends Cell Biol. 16, 167–173 (2006).

    Article  CAS  Google Scholar 

  12. Hildebrand, J. D. & Soriano, P. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol. Cell Biol. 22, 5296–5307 (2002).

    Article  CAS  Google Scholar 

  13. Hosobuchi, M., Kreis, T. & Schekman, R. SEC21 is a gene required for ER to Golgi protein transport that encodes a subunit of a yeast coatomer. Nature 360, 603–605 (1992).

    Article  CAS  Google Scholar 

  14. Guo, Q., Vasile, E. & Krieger, M. Disruptions in Golgi structure and membrane traffic in a conditional lethal mammalian cell mutant are corrected by ε-COP. J. Cell Biol. 125, 1213–1224 (1994).

    Article  CAS  Google Scholar 

  15. Girod, A. et al. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nature Cell Biol. 1, 423–430 (1999).

    Article  CAS  Google Scholar 

  16. White, J. et al. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J. Cell Biol. 147, 743–760 (1999).

    Article  CAS  Google Scholar 

  17. Emery, G., Rojo, M. & Gruenberg, J. Coupled transport of p24 family members. J. Cell Sci. 113, 2507–2516 (2000).

    CAS  PubMed  Google Scholar 

  18. Spano, S. et al. Molecular cloning and functional characterization of brefeldin A-ADP-ribosylated substrate. A novel protein involved in the maintenance of the Golgi structure. J. Biol. Chem. 274, 17705–17710 (1999).

    Article  CAS  Google Scholar 

  19. Cole, N. B., Ellenberg, J., Song, J., DiEuliis, D. & Lippincott-Schwartz, J. Retrograde transport of Golgi-localized proteins to the ER. J. Cell Biol. 140, 1–15 (1998).

    Article  CAS  Google Scholar 

  20. Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001).

    Article  CAS  Google Scholar 

  21. Weigert, R. et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402, 429–433 (1999).

    Article  CAS  Google Scholar 

  22. Reinhard, C., Schweikert, M., Wieland, F. T. & Nickel, W. Functional reconstitution of COPI coat assembly and disassembly using chemically defined components. Proc. Natl Acad. Sci. USA 100, 8253–8257 (2003).

    Article  CAS  Google Scholar 

  23. Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003).

    Article  CAS  Google Scholar 

  24. Dai, J. et al. ACAP1 promotes endocytic recycling by recognizing recycling sorting signals. Dev. Cell 7, 771–776 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank: J. Li and M. Bai for helpful discussions; and R. Premont, H, Kiener and H. Gilbert for technical assistance. This work was funded by grants from the National Institutes of Health to V.W.H., from Telethon (Italy) and the Italian Association for Cancer Research (AIRC) to A.L., and from the European Commission (postdoctoral fellowship programme) to H.G.

Author information

Authors and Affiliations

Authors

Contributions

Experimental work was performed mainly by J.-S.Y. with help from L.Z., S.Y.L. and H.G. The project was planned mainly by V.W.H. with help from A.L. All authors participated in data analysis.

Corresponding author

Correspondence to Victor W. Hsu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and S3 (PDF 624 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, JS., Zhang, L., Lee, S. et al. Key components of the fission machinery are interchangeable. Nat Cell Biol 8, 1376–1382 (2006). https://doi.org/10.1038/ncb1503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing